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WEAK-STRONG UNIQUENESS FOR MAXWELL-STEFAN
SYSTEMS*

XIAOKAI HUOT, ANSGAR JUNGEL?, AND ATHANASIOS E. TZAVARAS!

Abstract. The weak-strong uniqueness for Maxwell-Stefan systems and some generalized sys-
tems is proved. The corresponding parabolic cross-diffusion equations are considered in a bounded
domain with no-flux boundary conditions. The key points of the proofs are various inequalities for
the relative entropy associated with the systems and the analysis of the spectrum of a quadratic
form capturing the frictional dissipation. The latter task is complicated by the singular nature of
the diffusion matrix. This difficulty is addressed by proving its positive definiteness on a subspace
and using the Bott—Duffin matrix inverse. The generalized Maxwell-Stefan systems are shown to
cover several known cross-diffusion systems for the description of tumor growth and physical vapor
deposition processes.
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thin-film solar cell model, tumor-growth model
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1. Introduction. The Maxwell-Stefan equations describe the diffusive trans-
port of the components of gaseous mixtures. Applications arise in, e.g., sedimentation,
dialysis, electrolysis, and ion exchange [34]. They were suggested in 1866 by Maxwell
[31] for dilute gases and in 1871 by Stefan [33] for fluids. While there are several
works on the existence of local-in-time smooth solutions [4, 20, 21] and global-in-time
weak solutions [27] in the case of vanishing barycentric velocity, the problem of the
uniqueness of solutions is basically unsolved. The uniqueness of strong solutions has
been shown in [21, 24], and uniqueness results for weak solutions in a very special
case can be found in [10]. In this paper, we make a step forward in the uniqueness
problem by showing that strong solutions are unique in the class of weak solutions to
Maxwell-Stefan systems.

1.1. Setting. We consider an ideal gaseous mixture consisting of n components
with volume fractions or concentrations ¢;(z,t), ¢ = 1,...,n. The dynamics of the
mixture is given by the mass balance equations and the relations between the driving
forces and the fluxes,

(1) Orc; + div(cu;) =0, Ve =— Z (l:;cj (ui—wj), i=1,...,n,
iJ

j=1
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where u;(z,t) are the partial velocities and D;; = D;; > 0 are diffusion coefficients.
The equations are solved in a bounded domain  C R? (d > 1), supplemented by the
initial and no-flux boundary conditions

(2) ci(0)=c inQ, Ve-v=0 ondQ, t>0,i=1,...,n,

where v is the exterior unit normal vector to 0f2.

We assume that the barycentric velocity vanishes, which implies that the sum of
all fluxes vanishes, Y .- | ¢;u; = 0. Then, supposing that ¢ > 0 and Y. ;¥ =1 in
), we deduce from mass conservation that

Zcizl in Q for all ¢ > 0.
i=1

This constraint is necessary to invert the force-flux relations in (1), i.e., to express the
flux c;u; as a linear combination of the driving forces Ve;.

The global existence analysis for (1)—(2) is based on the property that the system
is endowed with the entropy functional

(3) H(e) = Z/Qci(log ¢; — 1)dx,

where ¢ = (c1,...,¢p,) solves (1)—(2) and satisfies the entropy dissipation inequality
27, (1.14)]

dH s )
il § 4 <
(4) o (e)+C 2 /Q |V/ci|*dx <0,

with C' > 0 depending only on (D;;). The aim of this paper is to prove the weak-strong
uniqueness for (1)—(2) and generalized systems. Weak-strong uniqueness means that
any weak solution coincides with a strong solution emanating from the same initial
data as long as the latter exists. In other words, the strong solutions must be unique
within the class of weak solutions. To achieve this aim, we use ideas from our previous
work [23] and establish a relative entropy inequality. This leads to a stability estimate
for the difference between a weak and a strong solution and eventually to the weak-
strong uniqueness property. Here, the relative entropy functional is given by

5) Hcle) = Zj: /Q (ci log £ — (e - ci)) da,

where ¢ and € are suitable solutions to (1)—(2).

In the literature, relative entropies are known to be useful to prove the weak-
strong uniqueness of solutions. First results were achieved for systems of hyperbolic
conservation laws [14] and later for the compressible Navier—-Stokes equations [16,
17] and general hyperbolic-parabolic systems endowed with an entropy [13]. The
relative entropy technique was applied to, for instance, entropy-dissipating reaction-
diffusion equations [18], reaction-cross-diffusion systems [11], energy-reaction-diffusion
systems [22], nonlocal cross-diffusion systems [26], and quantum Euler systems [8, 19].
Compared to the results of, e.g., [11, 22], the diffusion matrix in these works is assumed
to be positive definite if ¢; > 0 for all ¢ = 1,...,n, which is not satisfied for the
Maxwell-Stefan system.
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1.2. Definitions and assumptions. We impose the following assumptions:
(A1) Domain: Q C R? with d > 1 is a bounded domain.
(A2) Coefficients: D;; > 0 and D;; = Dj; for all4,j =1,...,n, i # j.

(A3) Initial data: 0 < c? € LY(Q) for i = 1,...,n, H(CO) <oo,and Y =1
in €.
Next, we define the concept of weak and strong solutions employed in this paper.
We call ¢ = (cy, ..., ¢n) a weak solution to (1)—(2) if ¢ satisfies the initial condition

(2), ¢, >0, 3" ¢, =11inQ x (0,00),
Ve € LE (0,00, HY(Q)), ¢ € CL.([0,00); V), i=1,...,n,

where V' is the dual space of V = {w € H*(Q) : Vw - v = 0 on 99}, and c satisfies
(1)~(2) in the weak sense, i.e., for any ¢; € CL _([0,00); C1(Q)) satisfying V¢ - v =0
on ) and any T'> 0,4 =1,...,n, we have

/Qci(T)qSi(T)da:—/Qc?qbi(O)da:—/OT/Qciatqﬁidxdt—/oT/Qcim-ti)idxdt:O,

where u; satisfies the force-flux relations in (1). The last integral is well defined,
since the gradient bound for /¢; implies that /c;u; € L (0, 00; L*(Q)) (see Lemma
7 below) and thus, because of the property 0 < ¢; < 1, cyu; € L (0,005 L?(12)).
Finally, a weak solution is required to satisfy the entropy inequality

(6) Z//ch u; —uj|*deds < H(c?).

131

For the Maxwell-Stefan system this is not an additional requirement as it is guaran-
teed by the existence theory of [27]; see section 3.1.

We will use the term strong solution to (1)—(2) to mean that ¢ = (¢;,...,¢,)
with 0 < ¢; < 1 is a weak solution satisfying additional regularity properties. The
necessary regularity is stated precisely in context. In certain cases, ¢; satisfies (1)—(2)
pointwise, as is the traditional notion of strong solutions.

1.3. Main results and key ideas of the proofs. Our first main result is
concerned with the Maxwell-Stefan system (1)—(2).

THEOREM 1 (weak-strong uniqueness). Let assumptions (A1)—(A2) hold. Let
¢ be a weak solution to (1)—(2) and let ¢ be a strong solution to (1)—(2) satisfying
0<¢ <1inQ,t>0, the reqgularity properties

logé; € HL. (2 x (0,00)), @ € L2 (2 x (0,00)),

and ¢; does not have anomalous dissipation, i.e., it satisfies the entropy identity

/ / Z GG |@; — aj|*deds = H(E®) fort > 0.

l

The initial data for ¢ and € satisfy assumption (A3). Then for any t > 0, there exists
a constant C(t) > 0, depending on t, Q, n, and (D;;), such that

(7) H(c(t)|e(t)) + Z /0 /Q cilui — w;|*dads < C(t)H(|e).

If the initial data coincide, i.e. c® = &° in Q, then c(t) = é(t) in Q fort > 0.

© 2022 Xiaoka Huo, Ansgar J'ungel, Athanasios E. Tzavaras
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We verify in section 3.1 that solutions with the stated regularity exist. To prove
Theorem 1 we develop a relative entropy identity and use it as a yardstick to control
the distance between two solutions. First, it is shown that the relative entropy (5)
satisfies the inequality

®) ddlj(c|c) ; ' Z /Q CDZZ (i — ;) — (u; — ;)| *dz

ij=1,i#j

(see section 3.2). Next, we study how the frictional dissipation (the second term in
(8)) controls the L? norm of u; — ;. The quadratic form in (8) captures the dissipative
effect of friction in the following way,

1 ~ CiCi _ _
5 O polwi—a) — (u— )P

:g D

%

(9) = _Z ui =) - (Ve (u; = ;) = YT A(e)Y,
where the matrix A(c) = (4;;(c)) € R™*™ is defined by

iy ke gick/Dieifi=,
(10) Ais(©) ‘{ =i Dy, it 5,

and Y = (Y1,...,Y,) with ¥; = \/¢;(u; — @;). The matrix A(c) is singular and thus
not positive definite. However, we can show that it is positive definite on the subspace
L:={z € R":\/c-z =0} (here, /c is the vector with components ,/c;) and the
quadratic form satisfies

YT A(e)Y > p|PLY |2,

where £ > 0 is a uniform lower bound for the positive eigenvalues of A(c) and Py, is
the projection on L. This inequality and a careful estimate of the right-hand side of
(8) implies (7) and the weak-strong uniqueness property.

The L* bound on the partial velocities @4; in Theorem 1 can be avoided at the
expense of assuming V,/¢; € L and ¢; is uniformly bounded from below by a positive
constant. The uniform lower bound is not needed in Theorem 1, where only positivity
is required.

COROLLARY 2. Let the assumptions of Theorem 1 hold, with replacing u; €
L>(Q x (0,00)) by Vi/C; € L™®(Q x (0,00)), i« = 1,...,n. Suppose additionally
that there exists m > 0 such that ¢;(t) > m in Q, t > 0, ¢ =1,...,n. Then there
exist constants C1 > 0 and Cy(t) > 0 (depending on t, Q, n, and (D;;)) such that the
following inequality holds for t > 0:

C - [ i — /Gi)|?dxds e
) HElew) + ) / / V(G — V&) Pdds < Cy(t) H(")).

© 2022 Xiaoka Huo, Ansgar J'ungel, Athanasios E. Tzavaras
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The relative entropy inequality (11) is the analogue of the entropy estimate (4).

It can be achieved by working with the square roots ,/c; as the main variables. More
precisely, we write the force-flux relations in (1) as

(12) VAV ZAU c)\/Guj, i=1,...,n,

subject to """ | ¢;u; = 0, where A(c) is defined in (10). This system cannot be directly
inverted, since ker A(c) = span{y/c}. However, introducing the Bott-Duffin inverse
ABP(e) of A(c) with respect to L := (span{/c})* (see section 2 and Appendix A),
we can invert (12), leading to

(13) - -:—QZA (Vycj, i=1,...,n,
and system (1) can be formulated in the concise form
(14) 8tcl—2d1v<ZfABD )V@), i=1,...,n.

The Bott-Duffin inverse APP(c) equals the group inverse studied in [6], since
L = ran A(c). Compared to [6], we work here with the square roots ,/c; instead
of the chemical potentials logc; (see [6, (4.25)]). The relative entropy inequality (8)
is rewritten in the form (see Lemma 9)

(15) c| +4Z/ABD VZ; - Z;dx

<4”Z:1/Z V\F(fABD —APP(c )\/@)dm,

where Z; = V\/¢; — \/ci/¢;V\/¢, i = 1,...,n. We prove in Lemma 4 that the
Bott—Duffin inverse is symmetric and positive definite on L,

ZTABD(C)Z > >‘|PLZ|2, Z = (Zlv e '7Zn)a

where A > 0 is a uniform lower bound for the positive eigenvalues of AP (c). In-
equality (11) now follows from this property and suitable estimates for the right-hand
side of (15).

The above-mentioned techniques can be extended to a class of generalized
Maxwell-Stefan systems, which includes several examples of cross-diffusion systems
occurring in applications (see section 5),

(16) Ore; + div(cu;) = chu] =0,

(17) _ZKij(C)Cjuj =V czzcj 60] ), 1=1,...,n,

© 2022 Xiaoka Huo, Ansgar J'ungel, Athanasios E. Tzavaras
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together with the initial and boundary conditions (2), where 0H/dc; denotes the
variational derivative of H. Again Y ., ¢? = 1 implies that Y., ¢;(¢t) = 1 in Q,
t > 0. We assume that

H(c) :Z/Qh,;(q)dx,

which gives 6H/dc; = hf, and (K;;) € R™" satisfies Y . | K;j(¢) = 0 for all
c € R%}. This model was proposed in [23] and can be obtained as the high-friction
limit of multicomponent Euler systems. It can also be derived from elementary ther-
modynamic considerations; see Appendix C. If the entropy H(c¢) equals (3) and
Kij(e) = \/ciAij(c)/\/cj, where A;;(c) is defined in (10), then system (16)—(17) re-
duces to (1). We refer to [5, 12, 30] for multicomponent diffusion models that account
for other factors, such as thermal conduction, viscous stresses, chemical reactions, etc.
We introduce the matrix B(c) = (B;;(c)) € R"*" by
1 .
(18) Bij(c) = —K,j(c)\/¢;, i,j=1,...,n,

ci

and we assume that B(c) is symmetric and as before, we set L := {z € R" : \/c-z = 0}
and L+ = span{/c}. We write (17) as (see the beginning of section 4)

n

- ZBM(C)\/?]‘U]‘ = Z(PL)U\/ZVh_;(CJ), 1= 1, ey n.

j=1
We show in Lemma 10 that this system can be inverted, leading to

n

Ve ==Y BEP(e)\ V) (¢)),

Jj=1

where BBP(c) is the Bott-Duffin inverse of B(c), and system (16)-(17) can be for-
mulated as
ores = div (3 yaBE? oH =1
c; = div (;\/07 B (C)@Vécj(c)>, i=1,...,n,
which, by the way, equals (14) if H(c) is given by (3) and B(c) = A(c).
We suppose for all ¢ € [0,1]™ the following conditions on the matrix B(c):
(B1) B(c) is symmetric and L = ran B(c), L+ = ker(B(c)Pyr).
(B2) Foralli,j=1,...,n and s > 0, B;;(c) is bounded and Lipschitz continuous
for all ¢ € [s,1]™.
(B3) There exists a function v : (0,00) — (0,00) such that for all m > 0 and all
s > m, it holds that v(s) < y(m) and ||B(¢)||r < y(mini=1, ., ¢).
(B4) All nonzero eigenvalues of B(c) are not smaller than a positive constant 4 > 0.
The partial free energy functions h;(c;) are associated with the pressures p;(c;)
via the thermodynamic relations

(19) pici) = cihi(ci),  pi(ei) = cihi(ci) — hi(eq).
For h;(c;) and p;(c;), we assume that, for some constants K;, Ky > 0, it holds that

(H) hl S 03((0, 1]), 0< cih;’(ci) S Kl, |p;/(61)| S thg/(ci) for c; € (0, 1]

© 2022 Xiaoka Huo, Ansgar J'ungel, Athanasios E. Tzavaras
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for ¢ = 1,...,n. This hypothesis implies that h;(¢;) is strictly convex, p;(¢;) is Lip-
schitz on (0,1]. The functions h;(¢;) = ¢;loge; — ¢; and h(¢;) = ¢, v > 1, satisfy
Our final main result is the weak-strong uniqueness property for (16)—(17).

THEOREM 3 (weak-strong uniqueness for the generalized system). Let assump-
tions (A1)—(A3) and (B1)—(B4) hold, and let h; satisfy hypothesis (H). Let ¢ be a
weak solution and € be a strong solution to (2), (16)—(17). We suppose that € satisfies
Gi(t) > m in Q, t > 0 for some constant m > 0,

B(€) € Hibo(Q x (0,00)) N LES, (0,00 W2™(Q)), i =1,...,n,

and the entropy identity

(20) Z / / V@i BEP (e)Vh(c;) - VI(¢;)dads = H(")

3,j=1

fort > 0. Then there exists a constant C(t) > 0, depending on t, m, and (D;;), such
that
H(c(t)|e(t)) < C(t)H(c|e’)  fort > 0.

If the initial data coincide, then c(t) = €(t) in Q fort > 0.

We do not explore the existence of solutions with the stated regularity. The
existence of weak solutions to (2), (16)—(17) can be shown by the techniques detailed
in [28, 29] under suitable assumptions on K;; and h} that guarantee nonlinear gradient
estimates. The existence of (local-in-time) strong solutions can be shown by following
the approach of [21] by formulating (16)—(17) as

atCZ* z le(ZMM VCJ) i:1,...,n,

where M;;(c) depends on BBP(c) and h!/(c;), and verifying that the principal part of
the operator M(c) = (M, ..., M,)(c), defined on suitable spaces, is normally elliptic
and satisfies the Lopatinski-Shapiro condition. By [15, Theorem 8.2], the operator
M(c) has maximal regularity of type LP and the local existence result follows from
[21, Theorem A1l].

The strategy of the proof of Theorem 3 is similar to that one of Theorem 1,
but it is more involved. First, we show a relative entropy inequality. The terms of
this inequality are estimated by splitting the domain into two regions: c.(z,t) :=
min;—1, ,¢(z,t) < m/2 and c.(z,t) > m/2, where m > 0 is the uniform lower
bound for ¢;. The final estimate reads

(21) dH —(cle) + Z/ (1= x(e))y/eic; BEP (e)Vhi(c;) - V(c;j)dx

m)Z/Qx(cﬂV(ci —&)|?dz < CH(cle),

where x(c), a cutoff function that vanishes if ¢; < m/2 for some i (see (65) for details).
An application of Gronwall’s lemma completes the proof. Notice, however, that we
do not obtain a gradient estimate as in (11).

© 2022 Xiaoka Huo, Ansgar J'ungel, Athanasios E. Tzavaras
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By specifying the coefficients K;;(c) and the entropy densities h;, we prove the
weak-strong property for cross-diffusion systems describing physical vapor deposition
processes [1] and for the tumor-growth model suggested in [25] and analyzed in [27]
and the Maxwell-Stefan system considering different molar masses that is derived in
[3, 5]; see section 5.

The main contributions of this work are, first, the derivation of the relative entropy
inequality (8) for the Maxwell-Stefan system and (21) for generalized Maxwell-Stefan
systems. Second, the introduction of the Bott—Duffin inverse provides an efficient way
to reduce the Maxwell-Stefan system to a (degenerate) parabolic system formulated
in the square roots /c;. (Related formulations using the chemical potentials 6 H/dc;
can be found in [6].) Third, we show that our technique can be extended to more
general Maxwell-Stefan systems which may have degeneracy at zero.

The paper is organized as follows. We study the properties of the matrix A(c),
defined in (10), and its Bott-Duffin inverse APP(¢) in section 2. In section 3, we
recall the existence results for global weak and local strong solutions to (1)—(2), prove
the relative entropy inequalities (7) and (8) as well as Theorem 1 and Corollary 2.
Section 4 is devoted to the existence of the Bott—Duffin inverse of B(c), defined in
(18), and the proof of the relative entropy inequality (21) eventually leading to the
weak-strong uniqueness Theorem 3. In section 5, we present some examples that
fit into our framework. Finally, we recall the definition and some properties of the
Bott—Duffin inverse in Appendix A, show two simple inequalities for the Boltzmann
entropy density in Appendix B, and derive the generalized model (16)—(17) from
thermodynamic principles in Appendix C.

Notation. We set Ry = [0,00). Elements of the matrix A € R"*™ are denoted
by A;j,1,7 =1,...,n, and the elements of a vector c € R" are cy,...,c,. T f: R =R
is any function, we define f(¢) = (f(c1),--., f(cn)) for ¢ € R™. In the whole paper,
C > 0, C; > 0 denote generic constants whose values change from line to line.

2. Properties of the matrix A(c). The properties of the matrix A(c), defined
n (10), have been studied in [4, 21, 27] under the assumption ¢; > O foralli =1,...,n.
Our results are valid for nonnegative concentrations ¢; > 0, including vacuum.

Let ¢ € R} Since (D;;) is symmetric, we have for all z € R",

0= Zn: Aij(c)z = Zn: %Zz— Zn: \/;TJZJ = z”: ﬁ(@%—ﬁ%%
i,j=1 ij=1,j#i Y ij=1,j#i Y ig=1,j#i Y
showing that span{+/c} = ker A(c). We set
ran A(c) = L :={x e R" : y/c-x = 0},
ker A(c) = (ran A(c))* = Lt = span{y/c},

and note that Z?Zl ¢; = 1 implies that |/c|> = ¢; +--- + ¢, = 1. The projection
matrices Py on L and P;. on Lt are given by

(22)  (Pp)ij = 6ij — Veicj, (Pri)ij=0ij — (Pr)ij = \/Cicj, 4,j=1,...,n.
LEMMA 4. Let ¢ € R} be such that Y. ; ¢; =1. Then

(23) 2T A(e)z > p|Ppz|®  for all z € R™,
where 1 =min;,;(1/D;;). Moreover, the Bott-Duffin inverse
ABD(C) = PL(A(C)PL + PLL)71

© 2022 Xiaoka Huo, Ansgar J'ungel, Athanasios E. Tzavaras
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is well defined, symmetric, and satisfies
(24) 2T ABP(e)z > A|Ppz|?  for all z € R",

where A = (232,,,(1/Di; + 1))

Proof. We first prove (23). Let 0 < a < p and suppose that ¢; # 0 for i =
1,...,Mand ¢; =0 for t = M +1,...,n. If necessary, we may rearrange the indices
to achieve this ordering. Since Z?:l ¢; = 1, it holds that M > 0. Thus, we can write
—A(c) — aPp. in block diagonal form as

Al o 0 0

0la 0
“Ale)—aPp = | | M :

: 0 .0

0| o an

where A € RM*M has the coefficients A;; = —Ai(¢)—ac; and Ay = (1/Dy; —a),/Gi¢;
fori,j=1,...,M,i# j,and a; = *Zzsz#Ck/ij for j = M+1,...,n. Because
of a < pu, the matrix A s quasi-positive and irreducible. Hence, by the Perron—
Frobenius theorem [32, Chapter 8], the spectral radius of A is less than or equal to the
Perron—Frobenius eigenvalue that is a simple eigenvalue of A associated with a strictly
positive eigenvector, and all other eigenvalues of A have no positive eigenvector. In the
present case, the Perron—Frobenius eigenvalue is given by Apr = —a and is associated
with the eigenvector (\/c1,...,+/car), recalling that ¢; > 0 for all i = 1,..., M (also
see the proof of Lemma 2.1 in [27]). Since all eigenvalues of A are not larger than
Apr, we have

ZT(=A)z > a|z]? for 2= (z1,...,21) € RM,
This leads, for any @ < p and z € R™, to the inequality

(A +aP)z = (-Dz+ S Y chj‘zf
i=M+15=1,5%i

1 n n n

>alz]?+ min — E ¢; E 2>azZ* +a E 22 = alz|?,

kb=l M Dpg 4~ .
k£l j=1,5#i i=M+1 i=M+1

where we have used the fact that Z?:l G =1 fore=M+1,...,n, since ¢; =0
for exactly these indices. This inequality implies that for all z = Ppz + Pr.z € R",

2T A(e)z + a|Ppiz|? = 2T (A(c) + aPp1)z > a|PLz|? + a|PL. 2|?,

which shows (23).

The invertibility of A(e)Pr,+ Py is a consequence of Lemma 15 in the appendix.
Consequently, the Bott-Duffin inverse ABP(¢) = Pr(A(c)Pp + Pp.)~! exists.

It remains to show (24). The spectral radius r(A(e)Pr, + Pp1) is bounded by the
Frobenius norm. Thus, because of A(c)Pr = A(c)(see Lemma 15 in Appendix A)

© 2022 Xiaoka Huo, Ansgar J'ungel, Athanasios E. Tzavaras



Downloaded 05/29/22 to 109.171.185.89 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

3224 X. HUO, A. JUNGEL, AND A. E. TZAVARAS

andOScigl,

n

1/2
MA(Q)PL + Py < | A(€) + Py |1 = ( S (Aisle) + F))

i,j=1
n n 2 n 2 1/2

- Cj 1
_{Z(Z.Dzjj%i) +Z ,(1_D,»j) Cicj}

=1 *j=1,j#i 1,j=1,1#£]

1 1

<2 1] =—-.
= ..Z,(Dij*) X

1,j=1,i#]

We infer that the eigenvalues of (A(c)Pp + Pp.)~! are larger than or equal to \.
Thus, in view of (81), we find that for all z € R™,

zTABD(c)z = (PLz)T(A(c)PL + PLL)71PLZ > )\|1DLz|27

finishing the proof. a

Since (Vy/c1,...,V/c,) € L, the existence of the Bott-Duffin inverse guarantees
that the solution of (12) can be expressed via the formula (13); see Appendix A.

3. Weak-strong uniqueness for Maxwell-Stefan systems.

3.1. Existence theory. We discuss the existence of weak and strong solutions
to the Maxwell-Stefan system (1)—(2). First, we recall the existence theorem for weak
solutions, which was proved in [27].

THEOREM 5 (global existence for Maxwell-Stefan systems).  Let assumptions
(A1)—(A3) hold. Then there exists a weak solution to (1)—(2) satisfying the entropy
inequality (6) for t > 0, or equivalently,

H(c(t)) +4 i: /OtLAgD(c)vm-V@dxds < H(co).

4,J=1

The existence of strong solutions was proved in [4, Theorem 1] and [21, Theorem
3.2].

THEOREM 6 (strong solutions for Maxwell-Stefan systems). Let Q C R? (d > 1)
be a bounded domain with 0 € C? and let ¢® € W2=2/PP(Q;R™) with ¢ > 0,
S ) =1inQ, where p > d+ 2. Then there exists T* > 0 and a unique solution

c to (1)—(2) satisfying
ci € CH((0,T%); W2=2/P2(Q)) n WHP(0, T LP (2)) N LP(0, T; WP(Q))

fori=1,...,n.

The strong solution of Theorem 6 has the property of immediate positivity: If
& > 0in Q, then ¢;(t) > 0in Q for 0 < t < T’, where T" < T depends on c .
Moreover, if the initial data are close to a constant vector, the strong solution can be
extended globally: Let ¢* € R}. Then there exists ¢ > 0 such that if the initial data
satisfy [|c” — ¢*[lw2-2/p0(q) < €, then the strong solution exists globally in time.

If & > 0in Q for i = 1,...,n, the continuity of the strong solution implies
that there exists 0 < T” < T* and m > 0 such that ¢;(t) > m > 0 in Q for
i = 1,...,n. Therefore, because of the embedding W2~2/P?(Q) — C*(Q), we have
VG € L=(0,T";Wh(Q)), and T" = oo if [|¢” — ¢*|ly2-2/pn(q) is sufficiently small.
This shows that the strong solution satisfies the regularity assumptions of Corollary 2.
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The assumption (/¢; € L2, (0,00; WH°(Q2)) and the property ¢;(t) > m in Q

loc

imply that the regularity condition u;, € L (€2 x (0,00)) of Theorem 1 is satisfied.
This is a consequence of the following lemma and m Y ;| [u;|? < S0 cilug|* <
C> " |Vy/cil>. Moreover, the assumption loge; € HE (€ x (0,00)) follows from

Vioge < [Veil/m € CO((0,77); CO(9).

LEMMA 7. Let 0 < ¢; < 1 and let u; be given by the force-flux relations in (1)
satisfying Y., c;u; = 0. Then there exists a constant C > 0, only depending on
(D;j), such that

n

i=1

i=1
Proof. It follows from (12) and the symmetry of A(c), defined in (10), that

n

DINCEEDY

i=1

n

Aij(e)y/cjuy

Jj=1

=Y Veui(A(e))ij/eiu;.

i,j=1

Since the eigenvalues of A(c)? are the square of the eigenvalues of A(c), we deduce
from (23) that 27 A(c)?z > p?|Ppz|? for all z € R". This yields

1Y IVVEP 2 i P )il
=1

Because Y1, \/¢i(y/ciu;)) = 0, we have (\/c;u;); € L and hence, Pr(\/ciu;); =
(\/¢iui);- The statement of the lemma follows after setting C' = 4/ 0

3.2. Relative entropy inequality. We first derive a relative entropy inequality
via a formal computation. Using (5) and (1), we obtain

d _ - Ci Ci _
(25) S H(cle) = X_;/ﬂ <log Eatci + (1 - Ci)atc,)dx
& Ci Ci _
= Z/ <V log = - (c;u;) — Vlog — - (ciui)>dm
i—1 Y9 Ci Ci
= Z/ ¢;V(loge; —loge;) - (u; — @;)dx.
i=1"9

To reformulate the integrand of the right-hand side, we insert the second equation of
(1), and use the symmetry of (D;;):

ZciV(log ci —logéc;) - (u; — ;)

i=1

i=1 YED) v
== ZCZ(UZ u;) - Z ;] ((ui — @) = (u; — @)
i=1 A Y
(26) - el — )« (e — &) (0 — 0,))

i.j=1,i#j
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n
_ CiCj |( —ﬂ)—(u—a)|2
i,j:zl;i;éa 2D Z Y

C;

This shows that

d CiCi _ 2
S H(cle) + Z/ 2 (wi — ;) — (u; — a;)| da

1] 1,i#j

(27)

= Z /ngl (¢j — &) (ui — ) - (u; — u;)da.

Our aim is to make this computation rigorous. Since the computation in (26) is
purely algebraic, it holds without any regularity restrictions. In principle, one would
expect that (27) holds under the condition that all the terms are well defined, which
would cover the class of weak solutions subject to the condition u; € L (to ensure
integrability of the right-hand side). However, we have not been able to establish
(25) for such a class of solutions, and stricter conditions on one of the solutions are
required.

LEMMA 8. Let ¢ be a weak solution to (1)—(2) and let € be a strong solution to
(1)~(2) satisfying 0 < ¢;(t) < 1 in Q, the regularity

log & € L, (0,005 HL(Q)), dylog e € Lo (2 x (0,00)), i € Lis(0, 005 L¥(Q)),
and the entropy identity

(28) Z / / Gi Ju; — | *daeds = H (%) fort > 0.

Then
Aij(e — ui)) - (v/¢5(u; — uy))dads
”ZI// Ve
(29) S H(CO|EO) - i (’LLZ' - ﬂl) . ('L_I/Z — ﬂj)dwds

1,j=1,1#£]

Proof. Since

H(c|e) = H(c) — H(e) — /Q ;(ci — &) log éida,

we need to formulate the time evolution of each of these terms. According to Theorem
5, the weak solution ¢ satisfies V/¢;, \/ciu; € LE (0, 00; L%(2)), and

Z / / €€y ~|ui — uj*dzds < H(c?) for t > 0.

’le

The symmetry of (D;;) and the force-flux relations in (1) give

- c; 1 & CiCi
Zciui'VIOgCi:_ Z Ciui‘Dij__(ui_uj):_i Z DJ| i — ),
ij

i=1 ij=1 K i,5=1
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and we formulate the entropy inequality as
nooet

(30) H(c(t)) — H(c) < Z/ / ciu; - Vlogc;dxds  for t > 0.
=1 0 JQ

The expression c;u; - V1oge¢; has to be understood as 2V,/¢; - (y/¢iu;), which is well
defined since V\/¢;, \/ciu; € L*(Q x (0,t)) (see Lemma 7). In a similar way, we
express the entropy identity (28) as

n t
(31) H(e(t) —H(e) =) / / citi; - Vlog&dads  for t > 0.
=1 0 Q
Next, the difference of the weak formulations for ¢ and ¢ gives

/ (ci — &)(t)ds(t)de — / (e — )i (0)dz
Q

Q

t t
= / /(CZ‘ - Ei)&gqbidxds +/ /(czuz - Eiﬂi) -Vo;dxds
0 JQ 0 JQ

L ([0,00); C1(€2)). Using a density argument we see that the

test function ¢; can be taken in the class H'(Q x (0,7)) for T' > 0, in which case
@i(t), ¢;(0) are well defined by the trace theorem. Selecting ¢; = log ¢;, we obtain

for test functions ¢; € C,

(32) /Q(CZ —¢;)(t)log ¢, (t)dx — / (c? — E?) log E?dx

Q

Taking into account the regularity properties of ¢;, we insert 9;¢; = — div(¢;u;) in the
third term and integrate by parts:

t - t .
/ /(cl - Ei)afcl dxds = / / V(?) - (€iu;)dzds.
0 Ja Ci 0 JQ G

We wish to write the integrand on the right-hand side as

V(EZ> . (Eﬂji) = (Vcl — EZVC1> “U; = ¢V 10g (fz) s U
C; C; C;

Since ¢; > 0 only, the expression log ¢; may be not integrable. Therefore, we define

=, t
aicz dxds + / / (ciu; — &) - Vogc;dads.
Ci 0o Ja

Ci 1 .
V log <cz) = \/E(QV\/(;_ VeiViege) ife; >0
as the product of two functions and Vlog(c;/¢;) arbitrary if ¢; = 0. Although this
product may be not integrable, the expression ¢;V log(c;/é;) lies in L?(Q x (0,¢)) and
consequently, ¢;Vlog(c;/¢;) - @; lies in the same space. Therefore, we can formulate
(32) as

(33) /Q(cZ =) (t)logc;(t)dx — / (& — &) log & dx

Q

t ] t
= / / CZ‘V1Og (Cl) . ’l_l,zdl‘dS +/ / (ciui - Eiﬂi) . VIOg EidIdS.
0 JQ Ci 0 JQ
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Subtracting (31) and (33) from (30) leads to

(34)  H(c(t)|e(t)) — H(c|&) < i/ot/gciVlog <2) (ui — ;) dads.

Finally, using (26) and the form (9) of the friction, we obtain (29). 0

3.3. Proof of Theorem 1. We proceed to estimate (29). We set ¥ =
(Y1,...,Y,) with Y; = \/¢;(u; — 1;), i = 1,...,n. Then, using (23), we have

35 3 Ayl —m) - (VE(u — ) = YTA@EY > plPLY [,

ij=1

It follows from the constraints > . ; c;u; = Y., &4; = 0 that

(PLJ_Y Z \/acj \/72 u]7

j=1
n n n 2
IPLY P =Y = [PoY P = cilui —wl* =) i > (¢ — &)1
i=1 i=1  1j=1
n
2 ZCZ|U1—U1 —nf[afre Z( _03)27
=1

where [|@ g :=max;—1 . n [|uj]l Lo @x(0,1)), and we used Y7 | ¢; = 1.
We turn to the last term in (29), which is estimated as

w |[].5
i,j=1,1i#j
S/ /Z(ﬁ-(ui—ui)(mz'cﬂ"”|ui_uj|)dxds
0 %=1 j=1 D
2||af| e NP N\
: min; ng// cllui_%' nZch—cj\ dxds
j=1
t n
H// ¢ilui — ;) ?dzds + C // ) 2dxd
3|y ™ Ug 1% c; — C; rds,
2 J, Q; | | w | Q;( )

where the constant C'(1) > 0 also depends on min,x; D;; and ||| p~. Inserting
(35)—(36) into (29) and taking into account Lemma 16 in Appendix B, we find that

H(e(t)|e(t)) + gz[)’/gzci\ui _ i 2dwds
H(c%e%) + C(,u)/o /QZ(CI —¢;)%dxds < H(c"|e°) + QC(/QL)/0 H(c|e)ds
i=1

Di; (Cj — &) (u; — w;) - (w; — uy)deds

IA

and an application of Gronwall’s lemma finishes the proof.
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3.4. Proof of Corollary 2. In this section, we express the relative entropy via
the Bott-Duffin inverse ABP(c).

LEMMA 9. Let the assumptions of Lemma 8 hold with u; € Lg%, (0,00; L>(12))
replaced by /¢ € L2 (0,00; WH°(Q)). Then, setting Z = (Zu,...,Zy,) with Z; =

Ve — (f/f)foorizl,...,n
(37) H(c(t)|e(t) +4Z//ABD VZi - Z;dxds

H(c°|e%) +4ZZI//Z Vf(‘ﬁABD — ABP(c )\/@)dmds.

Proof. Starting with the relative entropy inequality in the form (34), we express
its right-hand side by using (13),

ZciV(log ci —log¢;) - (u; — @)

i=1

- ci VAR | 1 1
— Vei — Zvéi> : ( ABP(e)—=V¢; — A?D( )VE->
2;( Gi ; Ve Ty T Vet g
_ - BD Cj BD = [Ci =
— 4 ;12 - ABP -—42212 (A \/;—Aij (e) cj)v e,
which gives (37). |

We continue with the proof of Corollary 2. We estimate the two integrals of
the relative entropy inequality (37). The integrand of the second term is estimated,
because of (24), as

(38) Z ABP(@)Z; - Z; > N PpZ|*.

3,5=1

The definitions of P;, and Z yield
Ci — . Cj =
o (fee) St

. \Ff - V&)’
V(VE —VE) SV - \FZ f V5

Using Young’s inequality (A + B + C)? > A?/2 — 4B? — 4C? and the bounds ¢; > m
and /¢; + /¢; < 2, we infer that

LN GRS

4Ti
_4\ﬁz— )

> IV - Va)F DS (e - VEITVaR

vV
l\D\»—l
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With this estimate, (38) becomes, after integration over Q x (0, ),

//A” szm>m2//ﬁmﬁ V&) 2dxds

2,7=1
16(n + 1)

- 7]_3113&” ||V\/57j||2L°°(Q><(0,T)) Z/o /Q(\/a— Vei) dxds.
i=1

m

Next, we consider the last integral in (37). By Young’s inequality,

(40)
42//2 Vf(‘FABD _ABD( )\/@)dmdsggi/ot/ﬂwiﬁdxds
+C rr11ax “v\/»”mc (2x(0,T)) Z/ / (fABD ABD( )\/\/Z:j)zdxds,

3,j=1

and the constant C' > 0 depends on A and n. The first term on the right-hand side is
estimated according to

() 2 = |Vive - va) - Y

< 2AV(E — VAP + = |VE - VaPIV VPR

To estimate the second term on the right-hand side of (40), we need some prepa-
rations. We write
Pp adj(A(e) + Pp1) . R(+/c)
det(A(c) + Pr.) ~ S(e)’

ABD(¢) = Pp(A(c) + Ppo) ! =

where “adj” denotes the adjugate matrix. We know that the elements of A(c), Pp,
and Py are polynomials of y/c. Therefore, R(+y/c) and S(1/c) are also polynomials of
Ve. Any eigenvalue of A(c) is also an eigenvalue of A(c)+ Pp. (since LT = ker A(c)).
As A(c) has the eigenvalue 0 with eigenvector v/c, A(e) + Pr. has the eigenvalue 1
with the same eigenvector. Moreover, all other eigenvalues of A(c) + Pr. are larger
than or equal to p. Since the determinant of a matrix is the product of its eigenvalues,
we conclude that S(y/¢) > ™~ > 0. This shows that S(y/c) is uniformly bounded
from below. Thus, we can estimate as follows, denoting the elements of the matrix

R(v/e) by Ri;(Ve),

‘\/EABD ABD( )\/E _ VE@Ri;(Ve)  Rij(Ve) /e

VGl I Vasve)  SWevg
1 - — = =
= SVasA v | (Ves(e) — VES(Va) Ry (Ve Ve
— (Rij(Ve)\/ej — Rij(Ve)\/¢;)VES(Ve)|
m) > |V — Vi,

i=1
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where C'(m) > 0 depends on the Lipschitz constants of the polynomials /¢; R;;(1/c)
and /¢;S(y/c). Inserting this estimate into (40), we obtain

(42) 42//2 Vf(fABD ABD()\/‘/Z:j>dxds

ij=1
< AZ//Q V(e - @Fdxdswé/ot/ﬂwa— V@) duds,

where C' > 0 also depends on the L norm of V4/¢; through (41).
Finally, we use estimates (39) and (42) in the relative entropy inequality (37),
together with Lemma 16 in Appendix B, to find that

Hele®) 1Y [ [ 1v(va - e
=1

< Ci/ot/g(\/a V&) dzds < Oi/otH(dc)ds

and an application of Gronwall’s lemma finishes the proof.

Remark 1 (nonhomogeneous total mass). The condition ;- | ¢¥(z) = 1 forz € Q
on the initial total mass can be relaxed to Y i, c?(x) = M(z) for €  and some
strictly positive function M € L*°(2). In this situation, the force-flux relations in (1)

change to

n
\ ZVcJ - > %Cj(ui—uj), i=1,...,n.
.7] 1 0j

=1 g=1.#i Y

Notice that the total mass 2?21 cj = M is preserved in time. The previous equation
can be expressed in terms of the matrix A(c), defined in (10), by

Z(PL)UV\F ZAZJ (e)v/ciug,

j=1 j=1

where the projection matrix P is now given by (Pr)i; = d;j — /¢icj/M(x), i,j =
1,...,n. Lemma 4 still holds in this situation with o < inf,cq M (x) min;«;(1/D;;).
The relative entropy inequalities (29) and (37) do not depend on the assumption
Yi, ¢i = 1 such that the relative entropy inequalities in Theorem 1 and Corollary 2
still hold but with constants depending on M.

4. Weak-strong uniqueness for generalized Maxwell-Stefan systems.
We consider the generalized Maxwell-Stefan system (16)—(17). First, we rewrite (17)
in terms of the Bott-Duffin inverse of B(¢). To this end, we recall the definition
(Pr)ij = d0ij — \/Ci¢; and rewrite the right-hand side of (17),

n

ciVhi(ei) =i ¥ ¢;Vh)(c;) = f(\/awl ci) Z VEic /& VI (c,))

j=1

=@ Y _(Pp)ij\/GVH(c)),

j=1
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as well as the left-hand side of (17), using definition (18) of B(c),

n

> Kij(e)eju; = fZBU o)/, i=1,...,n,
j=1
showing that (17) is equivalent to

n

_ZBw Weus = (Pr)iy/GVhy(e;), i=1,....n.

j=1
We prove in Lemma 10 below that the Bott-Duffin inverse BZP(c) of B(c) exists.
Thus, we can invert the previous system,
n

Ve ==Y (BPP(e)PL)ijy /& VI (c)) ZB ONCAYACHE

j=1

where we have used the relation B2 (¢) P, = BBP(c) (see (81) in Appendix A). This
equation generalizes (13). We conclude that system (16)—(17) can be written as

(43) atcldw(ZfB €)\/c;VH, (cj)> i=1,...,n.

4.1. Properties of the matrix B(c). We prove the following lemma.

LEMMA 10. Let assumptions (B1)—(B4) hold for B(c), defined in (18). Then the
Bott-Duffin inverse BBP(¢) = Pr(B(c)Pr, + Pp.)~! of B(c) exists, is symmetric,
and satisfies the following properties:

o Let s > 0. Then the elements BgD (c) are bounded and Lipschitz continuous
for all ¢ € [s,1]™.

e Let m > 0. Then there exists A\(m) > 0 such that for all z € R™ and
cem,1]",

(44) 2T BBP(¢)z > \(m)|Ppz|*.

e The matriz BPP(c) satisfies for all z € R™ and ¢ € [0,1]",
1
(45) 2T BBP(¢)z < ;\z|2,

recalling that u > 0 is a lower bound for the nonzero eigenvalues of B(c); see
assumption (B4).

Proof. Assumption (B1) and Lemma 14(ii) in Appendix A imply that
ker(B(c)Pp, + Pp.) = ker(B(e)PL)N L = L+ N L = {0}.

Hence, B(c)Pr, + Pp1 is invertible and the Bott—Duffin inverse is well defined and
symmetric.

We continue by studying the eigenvalues of B(¢) P, + Pr.1. A computation shows
that for /¢ € ker(B(c)Pr) = L we have (B(c)Pr + Ppi)/c = Py i+/c = \/c, ie.,
V¢ is an eigenvector of B(c)Pr, + P with eigenvalue 1. Let & ¢ LY, & # 0, be
another eigenvector,

(B(e)PL + Py )E = pE.
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Then p # 0. Applying P, on both sides, we obtain P, B(c)Pré = B(c)(Prf) = pPLé,
ie., Pr¢ # 0 is an eigenvector of B(c) with eigenvalue p. Due to assumption (B4),
we conclude that p > p > 0.

We claim that the elements BgD (¢) are bounded and Lipschitz continuous for all
c € [s,1]™. Indeed, observe that

_ 1 _ Pradi(B(e)Py + Pyu)
(46) BP(e) = PL(B(e)PL + Pro) ™ = — o pm =5

where adj denotes the adjugate. Since the determinant of a matrix is the product of its
eigenvalues, det(B(¢)Pr, + Pp1) > p"~! > 0 and the denominator in (46) is bounded
from below. Assumption (B2) implies that the elements of B(c) are bounded. Hence,
all elements of adj(B(¢)Pr, + Pr1) are bounded too. We conclude from (46) that the
elements of BBP(¢) are bounded. Since the product of Lipschitz continuous functions
is Lipschitz continuous, assumption (B2) further implies that the elements of BB (c)
are Lipschitz continuous for all ¢ € [s, 1]™ for any s > 0.

We wish to verify (44). Since the spectral radius r of a matrix is bounded by its
Frobenius norm || - | and the Frobenius norm is submultiplicative, we have

r(B(e)PL + Ppo) < |[B(e)PL+ Pru|lp < [|B(e)PL|F + || Ppe| 7
<[IBEIrlPlr + [[Pre]r-

The Frobenius norms of Py, and Py . are estimated according to

n n
1PLlE = D (65— vae)® < Y 1=n
i,j=1 i,j=1
n n 2
1P = 3 (Vas)? = (Z) —1
ij=1 i=1

Assumption (B3) guarantees that || B(c)||r < v(m). This thus shows that »(B(c) Pr+
Pri) < y(m)n + 1. We therefore infer that the smallest eigenvalue of (B(¢)Pr +
Pp1)~tis larger than A(m) := 1/(y(m)n + 1) proving (44).

It remains to prove (45). First, we show that the nonzero eigenvalues of B(c)
and BPP(c) are reciprocal to each other. Let £ € R be a nonzero eigenvalue
of BBP(c). Then the corresponding eigenvector y € L satisfies BPP(c)y = fy,
which is Pp(B(e)Pr + Pp.) 'y = fy. Hence, z := (B(c)Py + Pp.) "'y satisfies
Prz ={4(B(c)Pr, + Pr1)z. Applying Pj, on both sides yields Prz = ¢P.B(c)PrLz =
¢B(c)Ppz. Thus, Prz is an eigenvector of B(c) with eigenvalue 1/¢. Similarly, we can
reverse the above argument and verify that if z is a nonzero eigenvector of B(c¢) with
eigenvalue /, then (B(c)Pp + Pp1)z is an eigenvector of BB (c) with eigenvalue 1/£.
We conclude that the largest eigenvalue of BB (¢) is the reciprocal of the smallest
eigenvalue of B(c), and assumption (B4) implies that z” BBP(¢)z < |2|?/u for all
z € R™ a

4.2. Weak and strong solutions. We call ¢ a weak solution to (2), (16)—(17)
if
¢i € CRe([0,00); V') N Li (0,00, HY(Q)), i=1,...,n,

loc

where V' is the dual space of V = {w € H?*() : Vw - v = 0 on 99}, it holds for any
test function ¢; € CL ([0, 00); C1(Q2)) with V¢, - v = 0 on 99, and all ¢ > 0 that
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Jestwontiae -~ [ doar— [ [ covaas
+Z/ /\FBBD VWGV () - Vondads =0, i=1,....n,

and the entropy dissipation inequality

(47) Z / / Veic; BEP (e)VH(c;) - VI(c;)dads < H(c")
i,j=1
is satisfied for ¢ > 0.
Furthermore, we call € a strong solution to (2), (16)-(17) if ¢; € Cp, ([0, 00);
Cl(Q)) for i = 1,...,n, if (2), (16)—(17) are satisfied pointwise, and the entropy
identity (20) is fulfilled.

4.3. Relative entropy inequality. The partial free energies h;(c;) and pres-
sures p;(c;) are associated through (19). Define the associated relative free energy
density and relative pressure via

hi(cil€) = hi(ei) — hi(&) — hi(ei) (e — &),

pi(cilei) = pi(es) — pi(@) — pi(E)(ci — @).

We prove a relative entropy inequality associated with the generalized Maxwell-Stefan
system.

(48)

LEMMA 11. Let ¢ be a weak solution to (2), (16)—(17) and let € be a strong solu-
tion to (2), (16)—(17) satisfying

hi(€i) € Line(0, 00 H(9)), hi/ (&) € Lis.(0,00; L*(Q)), 9 € Lo (0, 00; L*(92)).
Then the following relative entropy inequality holds:

H(e(t)|et)) — H(c)e%) + Z / / BEP(e)Y; - Yjdxds

i,7=1

//(BBD - *EBE;\;C)\F)Y Vh(c;)dads

i,j=1
(49) +Z/ /pl cilés) d1v<ZB Vh’( ))dxds,
where
(50) Vi = aV(hi(e;) — (&), i=1,....n

Note that the definition for Y; differs from that used in section 3.

Proof. We proceed as in the proof of Lemma 9, but rearrange the terms in a
different fashion. The difference ¢; — ¢; satisfies the weak formulation

0= /Q(ci —Ei)(t)(bi(t)dx—/g(c? —6?)¢i(0)dx—/o /Q(ci &) Onpsdads
+Z / / VaBEP () GV, (c;) = VEaBEP (€)\/¢; VI (¢;)) - Vidads

for 1 = 17 ...,n. We wish to use ¢; = h;(¢;) as a test function. Strictly speaking,
this is not possible, but, as in the proof of Lemma 8, we can use a density argument.
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Then, using (43) for the third term and adding over i = 1,...,n, we obtain
(51)

O*Z/ i =) dI*Z/C*E?h'Czo)d
—Z/O /Q(Ci—éi)hg/((ii)div (Z:\E,»Bg’:’(c)\/?jv}l;(cj))dxds

+Z// VaBEP (€)Y, (c;) — VEaBEP (€)\/¢; VI (¢;)) - VR, (¢;)dxds.
Q

1,0=1

Subtracting (51) and the entropy identity (20) for € from the entropy inequality (47)
for e, we find that

Hic(t)e(t)) < H(c"[e") — Z/O /QBBD( )Veie; V(R (i) — hi()) - VR (c;)dwds

(52) - i /Ot /Q(ci — &) () div (zi:l ﬁBgD(c)Jngh;(éj)>dxds.

In turn, using (50), this is rewritten as

H(e(t)|et)) — H(c)e%) + Z//BBD )Y; - Y;dxds

7,7=1

//(BBD o)Ve — VeaBP (e )?)Y VI, (6;)dzds

_Ejl/ /fBBD Y VI, (&;)dads
//Z & = CaJah Cl)dW(iBﬁD( )\\?W( ))dxds

j=1

— ci — )bl (¢ E--n 5D (&) YG g (2)duds
/O/QE_;( Db (E)VeE; E::B” ()\/th](j)dd

= J1+ o+ Js+ Js.

The sum Js + J4 becomes

[y c;Vhi(c;) — & VR (e .” B-DE\F ! xds
Jo + Jy = /O/Q;(th( i) — & Vh(E)) ];B” ()th( &;)dxd

= /Ot/Qi(Pi(Ci) — pi(&)) div <jilBgD( )\\?Vh’( ))dmds

Combining this expression with J5 and using definition (48) finally leads to (49). 0O

4.4. The entropy dissipation structure. We state an auxiliary lemma that
provides some control of the entropy inequality (47) and the relative entropy inequality
(49).
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LEMMA 12. Let ¢ be a weak solution and € be a strong solution to (2), (16)—(17),
satisfying the hypotheses of Lemma 11 and ¢;(t) > m in Q, t > 0, for some constant
m > 0.

(i) Assume that c; > m/2 for alli=1...,n and let Z; = \/c;Vhi(c;). Then, for

some constant $(m) > 0, we have

(53) ZB o) Z;- Z; > 2B(m Zlml2

1,j=1

(i) Assume that c; > m/2 for alli=1,...,n and let Y; = \/c;V(hi(c;) — hi(&;)).
Then, for some S(m) >0 and C > 0, we have

n

(54) 2}8 Q)i Y = B(m) Y |Ve; = Ve P —=C> e — &l

1,7=1 =1 =1
(iii) Let the weak solution c satisfy (47) and set

(55) ce(z,t) == min ¢(x,t).

1=1,...,n

Then
t n
(56)  H(c(t)) +28(m) /0 /Q 1{C*>m/2};|wi|2dxdsgH(c").

Note that (56) provides a partial control of the gradients, which however might
degenerate as m tends to zero.

Proof. Proof of (i). Inequality (44) in Lemma 10 implies that

(57) ZB e)Z; - Z; > Nm/2)|PLZ|*> = X(m/2)ZT PF PLZ

3,j=1
n

=\m/2) > (PL)ijZi - Z;.

i,j=1

Before we can estimate the right-hand side, we need some preparations.
We define the vector ¢ := (¢, ...,c,—1) without the last component and define
the entropy density in n — 1 variables according to

n—1 -

@) = 3 uler) + (1~ Z )
i=1 j=1

Its partial derivative is given by

hi(e) = aﬁm_h’( ( S > oooon—1.

Oc;
) 1

<.

Next, introduce the matrix E(c) with elements
¢ —c? ifi =3,

Fule = avee =ty = e = {_C-c- ifi#j
149 .
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The sum of its rows and columns vanishes, Y7 , Eij(c) = Y i Eyj(c) = 0. We
deduce from the symmetry of E(c) that for all z; € R?,

n n n—1
Z E”(C)ZZ " Zj = Z,Zl . (ZE”( Zj + Ezn n) ZZZ Z EU P — Zn)
i,j=1 i=1 j=1
n—1 n—1
S S B0 - )+ 2 S @) — )
i=1 j=1 j=1

= i Eij(e)(zi — zn) - (25 — 2n)-

ij=1

Choosing z; = Vhj(c;) and observing that Z; = ,/¢;z;, we rewrite the right-hand side
of (57):

> (Pr)yZi- Z; = i Eij(e)(zi — zn) - (27 — 2n)
i,j=1 ,5=1
= Z (e)Vh;(e) - VI (€)

Introducing the matrix Q(c¢) with elements Q;;(¢) = 827L(E)/(“)ciacj for 7,57 =
1,...,n — 1, this expression becomes

n n—1

(58) Z (Pr)ijZi - Zj = Z Eij(e)Qix(€)Ver - Qje(€)Vey.

ij=1 4,4,k t=1
We claim that there exists ((m) > 0 such that for all y € R*~1,

(59) y" (Q@TE(c)Q(e))y > ¢((m)|y[*.

Then, letting y = Ve in (59) and using (57) and (58) leads to (53) with B(m) =
¢(m)A(m/2)/2. The proof of (59) proceeds in several steps.

Consider first the matrix Q(c). Let  := min;—1 .., min,, o<c, <1 hi(c;) > 0 and
¢ € R*! and compute

n—1
D>

=1

Q@) = K (c:)sy + 1! (1 -

x>

n—1 n—1
€1Q¢ = 1j(c))e + h;;(l - ck)«a et ) 2 g lE

j=1 k=1
This implies that Q(¢) is positive definite with eigenvalues larger than or equal to

n/2. Consider next the (n — 1) x (n — 1) submatrix P = ((Pr)ij)ij=1,....n—1 of Pp,
and note that for £ € R"~!, we have

§TPLE = 67 = (6 VO 2 6P — 6P (cx + -+ + cumr) = calé = TP
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Finally, let E(c) be the first (n — 1) X (n — 1) submatrix of E(c). Then E(c) =
STPLS with S = diag(y/c1, ..., /Cn1) and, for all y € R"~1,

T _ TS m 2 m? &
v E(c)y = (Sy)" P(Sy) > |Syl* = Zczyl > 72::

i.e., the eigenvalues of E(c) are larger than or equal to m?2/4. Since E(c)—(m?2/8)1,_1,
with I,,_; the unit matrix on R™~D*("=1)"and Q(¢) are symmetric and positive
definite, we deduce that

Q@ E©)Q@ > 0@ 1,10@ = 1.

This proves (59) with ¢(m) = m?n?/32.
(

Proof of (ii). Inequality (44) in Lemma 10 implies that
(60) Y BEP()Yi-Y; = Mm/2)[PLY [P = X(m/2) Y (Pp)iYi - Y5
i,j=1 i,j=1

Similarly as for the derivation of (58), we compute

n n—1

Z (Pr)iYi - Y; = Z Eij()(Qir(©)Ver — Qik(€)Ver) - (Qje(€)Ver — Qje(€)Vey)
ij=1 05,k e=1

n—1

= Eij(e)(Qir(€)V (cr — &) + (Qik(¢) — Qi (€)) Ver)

i,4,k,f=1
x (Qie(@)V (e — &) + (Q4e(€) — Qe(@)) V).

We remark that if E is any symmetric positive definite matrix, then for any zi,
z9 € R™, the Cauchy—Schwarz and Young’s inequalities show that

(21 +22) T E(z1 + 20) = 2] Ezy + 2T E2o + 2 Ez) + 21 Ez,

> 2] Ez — \/szzl A/ 2FEzy — \/szzl V2T Ezy + 2T Ez,
1 1
> 2T Ez — §szz1 — 22 Ezy + 2T Ezy = iszzl — 21 Ez,.

Using this inequality, (58) is estimated as

(61)

n

Z (PL)U

i,j=1

n—1

Z ¢)Qir(€)Q;e()V(ck —cx) - V(ce — ¢r)

l\D\H

n—1

Z_j Eig(e)((Qu(@) — Que(@)V) - (@3e(@) — Qye(@)Ver) = Js + Js.
k4=

2,7, 1

We infer from (59) that

Z\V i — Gl

l\D\»—l

(62)
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It follows from Ve, = — 22;11 Ve, that

n—1 2 n—1
V(en =) =Y Vien—a)| <(n—1)>|V(ex— @),
k=1 k=1
n n—1
DIVl —ea)P <ny Ve — el
k=1 k=1
Inserting these estimates into (62) yields finally
(63) gy > S i V(ci — @)l
- 2n =

The estimate of the term J; is easier. Since E;;(c) is bounded and the Hessian
Q(¢) = D?h is Lipschitz continuous,

n—1
Js <C Y Q@ - Qu(@))? |Vck\2<02 -~ |V01|2<OZ -

i k=1
Combining the above inequality with (63) and (61) gives

n n—1

> (Pr)iYs Z i —E)|P—C> (- @)

ij=1 i=1

We conclude (54) after inserting the previous estimate into (60).
Proof of (iii). Let c.(z,t) be defined by (55) and split the domain of integration
into the two subdomains

Q% (0,¢) = {c* > ’;}u{c* < ’2”}

By Lemma 10, the matrix BZP (¢) is symmetric and positive semidefinite. Using (53),
the entropy inequality (47) yields (56). |

4.5. Proof of Theorem 3. Lemma 11 suggests that the relative entropy in-
equality can be expressed in two ways, using either (52) or (49):

H(cle)(t) < H(c|e%) +/0 /Q(Il + I)dzds
(64) = H(|e%) + /t / (I3 + I + I5)dzds,
0o JQ

where

ZB (€)/ae; V (hi(e:) — hi(@)) - VA, (ey),

,5=1
== e = e v (Y VEBEP@) VGV @) )
i=1 =
_ Z K ) BgD
i,j=1
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Z Y; - <BBD \/7_ W)Vh;(c]),

Zzlpl cilé) d1v< J(;‘/Cijw;(aj))

and Y; = \/¢;V(hi(¢c;) — hi(&)),i=1,...,n

Step 1: Preparations. Recall that we have assumed that ¢ (x,t) > m for z € Q,
t > 0, for some m > 0. Let ¢, (z,t) := min;—; . ¢;(z,t). We split the estimations of
the above integrals into two subdomains: one where ¢, (z,t) < m/2 and another one
where ¢, (z,t) > m/2. To this end, we use a cutoff function. Let € > 0 be sufficiently
small and 9 : [0,1] — [0, 1] be a C2-function, which takes the values v = 0 on [0,m/2],
Y =1on[m/2+e1], and ¢ € (0,1) on the complementary interval (m/2,m/2 + ¢).
Define x(c) : R™ — [0, 1] by

i,j=1

n 1 ifm/24+e<¢ <lforalli=1,...,n,
(65) x(c) == Hl/f(ci) =40 if 0 < ¢; < m/2 for some i,
=1 ale) € (0,1) else.

We employ x(¢) to split the integral (64) into two parts:
(66) H(cle)(t) — H(c &) / / (1—x(e)3+ Is+ I5)dxds

/ / I3+I4+I5)d.’17d$— Jr + Ju.

In the following, we estimate Jr and Jgy separately.

Step 2: Case c.(z,t) < m/2+ . We estimate the term Jy, in (66). By replacing
p(c;|é;) in I by definitions (19) and (48) and tracing backwards the derivation from
(52) to (49), we can express the integral over (1—x(¢)(Is+14+1I5) by (1—x(¢)(I1+12)
except for a term accounting for the cutoff function:

67)  JL= / / (1= x(&))(I1 + I)dads
+/O/va(c)~_ (pi(ci) — pil@:) ZB Vh’( 2)-

In the following, we estimate the right-hand side of (67) term-by-term. To esti-
mate Iy, we set Z = (Z1,...,Z,) with Z; := \/¢,;Vhi(¢;),i=1,...,n. By Lemma 10,
the matrix BBP(¢) is symmetric and positive semidefinite. Therefore, using Young’s
inequality and the boundedness of BBP(¢) (see Assumption (B2)),

I =-Z"BBP(¢)Z + Z BEP(e)Zi\/c;VI,(¢;)

3,j=1

< 3 27B"(0)Z Z BEP()(VaVH; (@) - (V& VI (E))

,j=1

Bh

1 T nBD . 1= \|2
<-32"B (c)Z+C;|Vhi(c)
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where C' > 0 depends on m and p (defined in assumption (B4)). For the term Io, we
use the regularity for ¢; to conclude that

< ema 4 Y i) i (VB VETH ) < Y )
i= ,j=1 =

On the set x(c) < 1, we have c.(z,t) < m/2 + ¢, and there exists £ € {1,...,n}
such that cy(z,t) < m/2+e. Thanks to assumption (H) just after (19), we can apply
Lemma 17 to find that

2
hio (Cio‘éio) > KJm(cio - éio)Q > KEm (T; — 5) when X(C) < 1.

We infer that

IQ S zn:(q - Ei)Q + C’En:hl(cl@) S Cihl(q\él)

i=1 i=1 i=1

It remains to estimate the last term in (67), using the fact that Vx(¢) vanishes
outside the set ¢, € [m/2,m/2+¢], the Lipschitz continuity of p;(¢;), entropy inequal-
ity (56), and Lemma 17:

‘/ /VX zn:pl (¢;) — pi(ci) ZB Vh’( i )dzds
=1

)

t n
X / / Lim/2<c. <m/2+} Z IVeil Y lej — &ldads
0 JQ i=1 j=1
t n t n
< C/ / l{c*>m/2} Z |ch|2dxd5 + O/ / 1{c*<m/2+5} Z |Cj — gj‘Qd:pds
0 Ja i=1 0 /0 j=1
t n
S C + / / 1{c*<m/2+a} Z |Cj - 5j|2d$d5
0 Jo =
t n
< C/ / l{c*<m/2+5} Z hz(61|51)dl‘d5
0 v i=1

Note that the final constant C, depending on maxj—i . nSuP., jo<c <m/ote
|(0x/0c;)(c)|, will blow up if we let ¢ — 0. Therefore, we fix ¢ > 0. Combining
with the previous estimate, we end up with

(68
JL<—7/ / 1—x ZTBBD( )deds—l—C/ /1{p*<m/2+5}2h (cilé)dads.

i=1

3><

< C( max sup
j oc;

=bLonp o<, <m/2+e

=-(c)

Step 3: Case c.(x,t) > m/2. We proceed to estimate the term Jy in (66).
The range of integration now consists of the sets {m/2 < ¢, < m/2 + ¢}, where
0 < x(c) < 1, and the set {m/2 + ¢ < ¢, < 1}, where x(c) = 1.
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For the term I5, we use (54) in Lemma 12:

/ / ¢)Izdads = / / BD(e)Y; - Yidads

1]

o [ [ x(c)iém ~a)pasas—c [ [ X(c)g'ci & Pdeds.

By Young’s inequality with § > 0, the term I, can be estimated as

/ / ¢)Iydxds < 52/ / o)|Y;|?dxds

//Q <BBD e)\/ej — \EBB;E()\F) Vi (e5) Pdads.

Recall that we work in the range ¢; > m/2 and ¢ > m. The boundedness and
Lipschitz continuity of A/ imply that

1]1

Sl = va — (@)
<D albl (e V(e —a) + (i (e) = i (e) Ve

i
<C

1
> (Ve = &) + (e — )| Val?).

i=1

Furthermore, the boundedness and Lipschitz continuity of BgD (see Lemma 10) yield

BD(,. c__ﬁBﬁD(é) Cj
5P - YR

= ‘Bz‘j(c)\/@ - BiP(e)\/5 + (e - ﬁi}?}?(é)\/@

n n
< CZM‘*@\ + Ve = VE| < CZ|C¢*5i|-
i=1 =1

Thus, the choice § = S(m)/(2C) gives

n

B(m) / ' / )2
c)lydxds < |V(c; — &)|"dxds
/ / 2 Jo Ja Z
t n
+ C’/ / x(c) Z lc; — & dxds.
0o Jo P
Finally, we use definition (48) of p;(¢;|¢;) and hypothesis (H) to estimate

¢i — C;) / / pi(tc; + (1 —7)¢;)drds

< Ka(ci — Ei)2/ / h!(te; + (1 — 7)¢;)drds = Kahi(c;|é;).
o Jo

Ipi(cile:)| =
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In turn, this implies that

/ / c)Isdzds < C’/ / )Y hilcile)dads.
i=1

Summarizing the previous computations and using Lemma 17, we conclude that

(69) Jn < —@/ / ZW i — )| dwds

+C// hi(c;|e;)dzds.

Step 4: End of the proof. We combine the differential inequality (66) with the
estimations (68) and (69) to obtain

(70) Hc(t / / (1 —x(e))ZT"BPP (c)Zdxds

+Tm/0 /QX(C)Z;IV(Ci@)QdedS

t
< H(c"|&") —l—C/ H(c|e)ds
0

The constant C' > 0 depends in particular on m and the L>(0,T; W%°°(€)) norm of
¢j, j =1,...,n. The proof of Theorem 3 finishes after applying Gronwall’s inequality.

Remark 2. Inequality (70) leads to a slightly stronger version of the relative en-
tropy inequality than stated in Theorem 3. However, we obtain gradient estimates
only on the set {c. > m/2}, while on {c. < m/2}, the quadratic form ZTBBP(c)Z
generally does not lead to a control of the L?-norm of Ve;.

5. Examples. We present some examples for the generalized Maxwell-Stefan
system (16)—(17) satisfying assumptions (B1)—(B4).

5.1. A cross-diffusion system for thin-film solar cells. Thin-film crystalline
solar cells can be fabricated by the so-called physical vapor deposition process. This
process produces a metal vapor that can be deposited on electrically conductive ma-
terials as a thin coating. It is shown in [1] that the evolution of the volume fractions
of the thin-film components can be described by the cross-diffusion system

(71) &gci = div (Zaij(ujVui —uiVuj)), = 1,...,’[7,,
j=1
where a;; = aj; > 0fori,j =1,...,n,and > ; ¢; = 1. This model can be formu-

lated as a generalized Maxwell-Stefan system. Indeed, let h;(c¢;) = ¢;(loge; — 1) and
Kij(e) = Y0_ 1 JeALP (e) /G for i,5 = 1,...,n, where A(c) is given by (10) with
D;; = 1/a;;. Then B(c) = ABP(c) (see (18)) and hence BPP(c) = A(c). Equation
(43) becomes

n

(72) Oic; = div (Z\/EAM(C)\/FJ-ngcj>, i=1,...,n.
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Because of (10), the mobility matrix (,/c;A;;(c),/c;) reads as

> aikcic, ifi =7,
\/CjA”(C)\/a o { —a;cicj if 4 7& j,
and an elementary computation shows that (72) can actually be written as (71).
Although it can be checked that the matrix B(c) = APP (c) satisfies assumptions
(B1)—(B4), we can here directly verify the statements of Lemma 10. Definition (10)
of A(c) immediately implies that BED (¢) is bounded and Lipschitz continuous on
[0,1]™. Property (44) follows from (23) in Lemma 4 with A(m) = p. Hence, the
weak-strong uniqueness property holds for this model.

5.2. A tumor-growth model. The growth of a symmetric avascular tumor
can be modeled on the mechanical level by diffusion fluxes of the tumor cells, the
extracellular matrix (ECM), and the interstitial fluid (water, nutrients, etc.). The
model was suggested in [25] and analyzed in [27]. The evolution of the volume fractions
¢; of the tumor cells, ECM, and interstitial fluid is given by (see, e.g., [29, section
4.2])

(73) atCi + le(Czuz) = 0, 1= 1, ey 3,
3
(74) V(eiP;) +¢;Vp = — Z kijeici(wi —uj), i=1,2,
j=1
3
(75) csVp ==Y kijeici(u; — uy),
j=1

where k;; = kj; > 0 for 4,5 = 1,2,3, the partial pressures P;, P>, and the phase
pressure p are given by

P1 = Cq, PQZ/BCQ(1+061), p:—Clpl—CQPQ,

B >0, 0 > 0 are suitable parameters, and it holds that Zle ¢ = 1.

We claim that (73)—(75) can be formulated as a generalized Maxwell-Stefan sys-
tem. We define the entropy densities as in the previous example, h;(c;) = ¢;(log¢;—1),
i =1,2,3. With the matrix

2¢1(1 —¢y) — BOerc2 —2Bc1eo(1 4 0cq) 0
W(e) = | —2ciea + BO(1 — ) 2Bca(l —c2)(1+0ec1) 0],
—2c1c3 — BOcsc3 —2fBcsea(1 4 Ocq) 0

the left-hand side of (74)—(75) can be written in a more concise form:

V(01P1) +c1Vp Vel
V(CQPQ) + szp = W(C) VCQ
c3Vp Ves

Let the matrix A(c) be given by (10) with D;; = 1/k;;. Then the right-hand side of
(74)—(75) equals (also see (12))

)

J=1,5#i Y

8. e 3
- Y ) = *Z\/E‘Aij(c)\/c»j“j-
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Thus, inverting
3

> Wij(e)Ve; = Z\FA” c)\/euy, i=1,2,3,

j=1
(which is the same as (74)—(75)) yields

> 1
_ BD .
Veiu; = — Z A (C)ﬁij(c)Vck, i=1,2,3,
7,k=1

and system (73)—(75) can be written for i = 1,2, 3 as

Ope; = div ( i: \/aAf;D(c)\/lEij(c)ch

j.k=1 J

= div BD
=d (]gl\fA \F

recalling definition (22) of Pp. Thus,

Wik(e wa(PL)kmvmgc@),

Oic; = div (Z VeiRii(e)\/cV log Cg> where

Z Aj \/» Wik(e)vew(Pr)ke, i,0=1,2,3.
7,k=1

Also in this case, it is more convenient to check the statements of Lemma 10 instead of
assumptions (B1)—(B4). Notice that W (¢) is not symmetric, so R(e) is not symmetric
either. The elements R;;(c) are bounded and Lipschitz continuous, since AﬁD (¢) and
Wij(c) have these properties. The second statement of Lemma 10, namely, property
(44), is verified only for a special example that was considered in [27].

LEMMA 13. Let kij = 1 for i,j = 1,2,3 and 0 < § < 4//B. Then, with m =
min;—1 2,3 ¢; > 0, there exists A\(m) > 0 such that

2T R(c)z > A\(m)|Prz|?  for all z € R3.

Proof. The assumption k;; = 1 implies that A(c) = P, and hence ABP(c) =
Pr(A(c)Pr, + Pr1)~! = Pp. Suppose that for any y € R? satisfying y € L (i.e.,
Ve -y =0), we have

(76) Z (©)veyiy; = Mm)|y[*.

7J1

Then, for z € R® and y = Prz € L,
> 1
z"R(c)z = ) (Prz); \ﬁWu( VG (Prz)j > A(m)| Pz,

irj=1 '

which proves the lemma.
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It remains to verify (76). Using y3 = —(\/ciy1 + /C2¥2)//C3, we calculate

3 j;%(c)«c?yiyj — 28(1 4 b (Vaays)? + Boea(v/eryn) (v/eaye) + 2erm)
i,j=1 v

Since 0 < 0 < 4/4/f, the discriminant of the quadratic form is negative and there
exists k > 0 such that

K
Z &)V > wlery} +eayd) > T (ery? + o + (Ve + Ver)?)
1,]= 1
K
=3 = (C1yf + oyl + c3y3) > g( mln Cz) (i + 5 +3),
proving the claim with A\(m) = km/3. O

We deduce from the previous lemma that the weak-strong uniqueness property
holds for the tumor-growth model if k;; =1 for 4,5 =1,2,3 and 0 < 0 < 4//B. The
latter condition is necessary to achieve the global existence of weak solutions, since it
guarantees the positive semidefiniteness of the mobility matrix; see [27] for details.

5.3. A multispecies porous-medium-type model. Another model is a gen-
eralization of the first example to illustrate that also nonlogarithmic entropies may
be considered. We choose h;(¢;) = ¢} /(v — 1) With v > 1 and A(c) as in (10). The
partial pressure becomes p; = ¢;h}(c;) — hi(¢;) = ¢], and (72) reads here as

n

cch}_l))

dye; = div (Z Veidij(e) eV (cj)> = div <

Hence, the weak-strong property holds for this model.

5.4. Maxwell-Stefan system with different molar masses. In (1), we have
implicitly assumed that all molar masses of the species are the same. We show that the
weak-strong uniqueness property also holds for the model proposed in [3, 5] without
this assumption. In the case of different molar masses M;, we need to distinguish
between the mass densities p; and the molar concentrations ¢; = p;/M;. The Maxwell-
Stefan equations read for i =1,...,n as

2 e 0H i 0H
77) Oipi + div(pu;) =0, — L (ui —uz) = piV—(p) —pi ¥ p;V—1I(p),
(77) O (piu;) ;CQD (u;i — uy) 5[)1() ; j 5pj()

where ¢ = 371 | ¢;. As before, the restriction ) 7_, p; = 1 inherited from the initial
data is imposed. The second equation can be rewrltten as

SRR A T

where Dy;(p) = M;M; = (Y7, pr/My)>M; M;. Due to

n n
Yy
- - b
= My T maxe=y, o My maxe=y o M
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the coefficients Eij(p) are uniformly bounded from below. Since the proof of Lemma
4 only relies on the uniform boundness of D;;, Lemma 4 also holds for the following

matrix Z(c), defined similarly as in (10):

T ) Xk pi/Di(p) if i =4,
Ai(p) = ki)
) { —/pi77/Dis (p) ifi #J.

Therefore, the weak-strong uniqueness holds if H(c) satisfies the assumptions of The-
orem 3.

Recalling that H(p) = >, fQ (p;)dx, we may formulate the entropy in terms
of the concentrations c as 77( ) = >oiq Jomilci)dx, where 1;(¢;) = hi(pi/M;). Then
we can rewrite the second equation in (77) as

CiCj -
- Z Dj - Uj) = C,LV/LZ - CiMi Z ijuj,
C ij =

where u; = n}(c;) is the molar-based chemical potential. Using the Gibbs-Duhem
equation Vp = Z;—;l ¢;j Vi, where p is the pressure, the above equation can be put
into the form

n

cic

Z c;D —uj) = c;Vi; — piVp,
Jj=1

which is [5, Formula (203)]. Yet another formulation in terms of the molar fractions

X;=c¢i/cis

- CiCj ~
Z L (u; — u;) = i Vi + (¢ — i)V,

where [i; is given by 11;(p, X1, ..., Xn) = pilci), Vpfii := 35—, (011:/90X;)VX;, and
¢; := Op; /Op is the volume fraction.
A simple choice is the entropy

ni(c;) = ciloge; — ¢y, i=1,...,n,

corresponding to h;(p;) = (p;/M;)(log(p;/M;) — 1). Tt leads to p; = logc;, p = ¢, and
the model

- Z “il (u; —uj) = Ve; — pi Ve

2
iz ICng

The existence of local strong solutions to this model can be proved as in [4], while the
existence of global weak solutions was shown in [9].

Appendix A. The Bott—Duffin inverse.

For the convenience of the reader, we recall the definition and some properties
of the Bott—Duffin inverse. Let A € R™*™ be an arbitrary matrix and L C R"™ be a
subspace. The Bott—Duffin inverse is introduced in connection to the solution of the
constrained inversion problem (see [7], [2, Chap. 2.10])

(78) Ar+y=0b, zeL, yelt.

Let P;, and P; . be the projection operators onto L and L1, respectively. The set of
solutions of (78) is the same as the set of solutions to (APy + Pr1)z = b, and (z,y)
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solves (78) if and only if x = Prz and y = Pp1z = b— APpz. Then, if the matrix
APy, + P is invertible, we define the Bott—Duffin inverse of A with respect to L by

(79) ABD . — PL(APL+PL¢)71
and the solution to (78) is expressed in the form
(80) x=ABPYL y=10b— Az,

If L =ran(A) and A is symmetric, the Bott—Duffin inverse is the same as the group
inverse, which was investigated in the context of Maxwell-Stefan systems in [6].

Let A be symmetric. We call A L-positive definite if 2T Az > 0 for all z € L\ {0}.
For this class of matrices, a generalized Bott—Duffin inverse is defined in [35], which
coincides with the classical Bott—Duffin inverse when APy, + Py is invertible. The
following result is proved in [35, Lemmas 2c and 1b].

LEMMA 14. Let A be symmetric and L-positive definite. Then

(i) ABP P, . =0,

(ii) ran(APr + Pp.) = Prran(A) ® L+, ker(APp + Pr1) =ker(APr) N L.

It follows from property (i) that APP can be formulated as
(81) ABD — PL(APL + PLL)il(PL + PLL) = PL(APL + PLL)ilpL = ABDPL.

LEMMA 15. Let A be symmetric and L = ran A, L+ = ker A. Then AP, = A,
PrA= A, ABP is well defined and symmetric.

Proof. The identities AP;, = A and Pr, A = A follow immediately from L = ran A.
We infer from property (ii) that

ker(APy, + Pp.) = ker(AP)N L =ker(A)NL = L*NL={0},

showing that APy + Pp. is invertible. The matrix AP, = PrAP; is symmetric,
since Py, and A are symmetric. Also Pp. is symmetric, so APy, + Py and its inverse
are symmetric too. Taking into account expression (81), this implies that APP =
Pr(APp + Pp.)~ 1Py is also symmetric. O

In our context, we are interested in the constrained inversion
Ax=b, xz€L,

where A is a symmetric positive semidefinite matrix, with L = ran(A4) and thus
L+ = ker(A), and b € L. Lemma 15 implies that APy, + Py is invertible and AZP
is well defined by (79). Because of (80), we can express the inverse as z = APPp if
be L.

Appendix B. Pointwise estimates for entropy functions.
For the convenience of the reader, we recall the following lower bounds.

LEMMA 16. The following estimates hold for any ¢, ¢ € [0,1]:

(=27 clog=—(c—2) > (Ve— Ve

M| —

clogg—(c—é)z
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Proof. Let f(¢) = cloge. Then

F(&) = £(0) = f(B(c— &) +0)|,_, = —E)/ F'(0(c — ) +c)db
0
and
clog= — (¢ =) = f(c) = £(2) = f' @)(c—7)
— (-9 / (f'(Blc— ) +¢) - ['(c))db

c—c/f c—7¢) )’ 040 = (c—2) //f” s(c—¢) + ¢)dsdf.

The first inequality follows after observing that f”(s(c—¢&)+¢) = 1/(s(c—¢)+¢) > 1.

For the second inequality, we define g(c) = (clogc—c+1)/(y/c—1)? for ¢ # 1 and
g(1) = 2. Then g is continuous and increasing, which implies that g(c) > ¢(0) = 1
and proves the statement. 0

LEMMA 17. Let ¢,¢ € RY} satisfy 0 <¢; <1, m < ¢ <1, fori =1,...,n, and
suppose that h; € C([0,1]) N C?((0,1]) satisfies

R (c;) >0 for0<c; <1.
Then, for some Ky, >0,
(82) hi(ci\éi) = hi(ci) — hi(@‘) - h;(él)( — Cl) > Hm(CZ‘ - Ei)g.
Proof. By Taylor expansion, the relative entropy density satisfies
= lim / hi(s(c; — &) + ¢;)dsdf = §h;’(éi) > 0.
—cJo Jo

Therefore, h;(c;|¢;)/(c; — ¢)? is a continuous function with a positive minimum:

hi(c:é;
Km := min min 1(07{61)2 > 0.
i=1,...,n ¢;€[0,1], & €[m,1] (¢; — &)

This shows that h;(c;|¢;) > km(c; — ) for ¢; € [0,1], & € [m, 1] and proves (82). O

Appendix C. Thermodynamic derivation of the generalized Maxwell—
Stefan system.

The aim of this section is to derive (16)—(17) from elementary thermodynamic
principles. We assume that the evolution of the gaseous mixture is given by the
conservation of mass and energy (without chemical reactions),

O(pei) + div(pcv + J;) =0
(83) O (pU) + div(pUv + q) = 0,
Op+div(pv) =0, i=1,...,n,

where p; is the partial density of the ith species, p = >_"" , p; the total density,
¢i = pi/p the concentration of the ith species, v the barycentric velocity, J; the ith flux,
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q the heat flux, and the internal energy U is given by the first law of thermodynamics
in differential form by

(84) dU = TdS — pdV + Y _ pide;,

=1

where S is the entropy, V = 1/p the volume, and u; = 0U/d¢; the ith chemical
potential. By definition, it holds that >, ¢; = 1. Adding the first and last equation
in (83), we see that div . ; J; = 0, which motivates us to assume that > ., J; = 0.
The sum of the fluxes should vanish, Y "' , J; = 0, to be consistent with the
conservation laws.
With the material derivative D;f = 0,f + v - Vf, the conservation laws can be
simplified to

pDic; +divJ; =0, pDU+divg=0, Dip+ pdive=0.

Inserting these equations into (84), formulated as D;U = T'D;S *thV+Z?=1 i Dycy,
yields the entropy balance

thS:§DtU+ th< > Z‘”th
1 i g, .
:—Tdivq—&—%divv—l—;%dlvﬁ:—dles+7“5,

where

Js:——z:/lZ i, Ts=¢q-V= +pd1vv+ZJ V'ul

i=1

are the entropy flux and entropy production, respectively.

In our Maxwell-Stefan model, we assume that v = 0 and T' = 1. Then the entropy
production simplifies to rg = Y .| J; - V. It can be reformulated by taking into
account that Y, J; = 0 and hence J;/\/c; € L={x € R" : /Je-x = 0}:

==Y e aVi == > e (P GV = —
;\/07 Z \/a L J\/7 J ;

4,j=1

J. n
=N (PL)ijy /G Vi,
v/ Ci =

where the projection Py, on L is defined in (22). By the second law of thermodynamics,
it should hold that rg > 0. To guarantee this property, we introduce a positive
semidefinite matrix B(c) such that

n

(85) Z(PL)ijﬁvuj = —;Bij(C)\}]%, 1=1,...,n.

Jj=1

We claim that these equations correspond to the generalized Maxwell-Stefan equa-
tions (17) after setting J; = c;u; and Kij(c) = /ciBij(c)/\/c; (see (18)). Indeed, the
left-hand side of (85), multiplied by /c;, becomes

ﬁZ(PL)ij\/?jvﬂj =V — ¢ Z c; Vi,

j=1 j=1
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and the right-hand side of (85), multiplied by ,/¢;, equals

—Vei ) Bije) =L == Kij(e)J; == _ Kij(c)eju;.
j=1 \/7 j=1 j=1

Hence, observing that pu; = 0U/0c; corresponds to 6H/dc;, (85) equals (17).

[20]
(21]
(22]

(23]
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