Numerical Methods for Electromagnetic Modeling of Graphene: A Review

<table>
<thead>
<tr>
<th>Item Type</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Niu, Kaikun; Li, Ping; Huang, Zhixiang; Jiang, Li Jun; Bagci, Hakan</td>
</tr>
<tr>
<td>Eprint version</td>
<td>Post-print</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1109/JMMCT.2020.2983336</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Journal</td>
<td>IEEE Journal on Multiscale and Multiphysics Computational Techniques</td>
</tr>
<tr>
<td>Rights</td>
<td>Archived with thanks to IEEE Journal on Multiscale and Multiphysics Computational Techniques</td>
</tr>
<tr>
<td>Download date</td>
<td>2024-01-17 05:21:16</td>
</tr>
<tr>
<td>Link to Item</td>
<td>http://hdl.handle.net/10754/662399</td>
</tr>
</tbody>
</table>
Numerical Methods for Electromagnetic Modeling of Graphene: A Review

Kaikun Niu, Member, IEEE, Ping Li, Senior Member, IEEE, Zhixiang Huang, Senior Member, IEEE, Lijun Jiang, Fellow, IEEE, and Hakan Bagci, Senior Member, IEEE,

Abstract—Graphene’s remarkable electrical, mechanical, thermal, and chemical properties have made this frontier of many other two-dimensional materials a focus of significant research interest in the last decade. Many theoretical studies of the physical mechanisms behind these properties have been followed by those investing the graphene’s practical use in various fields of engineering. Electromagnetics, optics, and photonics are among these fields, where potential benefits of graphene in improving device/system performance have been studied. These studies are often carried out using simulation tools. To this end, many numerical methods have been developed to characterize electromagnetic field/wave interactions on graphene sheets and graphene-based devices. In this paper, most popular of these methods are reviewed and their advantages and disadvantages are discussed. Numerical examples are provided to demonstrate their applicability to real-life electromagnetic devices and systems.

Index Terms—Computational electromagnetics, graphene, two-dimensional (2D) materials.

I. INTRODUCTION

Graphene [1], [2], an allotrope of the three-dimensional (3D) crystalline graphite, consists of carbon atoms arranged as a two-dimensional (2D) monolayer of hexagonal lattice resembling a honeycomb. In the last decade, it has attracted significant attention from various research communities in the fields of physics and engineering due to its unprecedented mechanical and electrical properties that have lead to design of many new systems and devices [3]–[6].

The graphene stacks can be produced on a piece of paper when we write with a pencil since the pencil lead contains graphite consisting of multilayer graphene. Recent technological developments in optical microscopy have permitted the experimental study of atomically thin 2D materials including graphene. Indeed, Novoselov and Geim [1], who studied the graphene and observed its properties at the beginning of the 21st century, received the Nobel Prize for their groundbreaking contribution. They have found that graphene supports a strong ambipolar electric field effect and demonstrates semi-metallic properties. It has also been demonstrated that graphene exhibits electrical characteristics similar to those of the semiconductors (except the zero band gap) [7]. The invention of micromechanical cleavage technique has certified that the high-quality graphene can be isolated easily. This has immediately ignited an evolution in the investigation of a whole family of 2D materials [8], [9] (whose first member is the graphene). The family of 2D materials is expanded rapidly to include more members and now consists of a large number of materials such as hexagonal boron nitride (insulator) [10], black phosphorus (semiconductor) [11], and NbSe2 (metal) [12]. These 2D materials can often be stacked together to create novel materials with synergetic effects [13] that can execute a user-desired function.

Significant research has been done to uncover the underlying physics behind the exceptional characteristics of the 2D materials, which are distinctively different from those of their traditional 3D parental materials. First of all, since 2D materials are constructed starting from an atomic level, they are weakly restricted by van der Waals forces that hold the material layers together [9]. Second, 2D materials strongly interact with electromagnetic fields in a broad range of frequencies changing from microwave to ultraviolet part of the spectrum [14], [15]. Third, the quantum Hall and Berry phase effects are observed along the direction of the 2D material’s surface [16]. These novel effects occur on monolayer 2D materials distinguishing them from their 3D counterparts and translate to unprecedented optical, electrical, mechanical, and thermal features [17]. These features have opened the way to designing tunable optical and electronic devices with high confinement and low loss and abilities to execute high-speed and flexible light detection, modulation, and manipulation.

Indeed, in the last several years, many researchers have focused on realizing the potential of graphene in real life applications. As mentioned above, graphene strongly interacts with electromagnetic fields: Its response to high frequency electromagnetic field, i.e., light, is nonlinear and shows plasmonic characteristics. This response can be adjusted through doping, gating, and chemical processes [18]. A tunable terahertz (THz) graphene-based metamaterial has been engineered to achieve conspicuous optical absorption peaks through the generation of real-time tuning of the device’s response.
of plasmon resonances [19]. The gigahertz (GHz) graphene-based electro-absorption modulator capable of operating at a wide range of frequencies has been designed by tailoring graphene’s Fermi level [20].

The most successful and commonly-used device, which makes use of graphene’s electronic properties, is the field-effect transistor (FET). Graphene supports an impressively high carrier mobility at room temperature, which in return helps to increase the FET’s operation speed [21]. On the other hand, the channel of the logical devices making use of graphene cannot be switched off since graphene has no band gap. To overcome this problem by opening up the band gap, graphene nanoribbon (GNR) [22] and biased bilayer graphene [23] have been proposed and implemented. Furthermore, the possibility of molecular-scale electronics has been certified by the invention of graphene-based quantum dot devices developed to achieve electron transport [24]. It has been demonstrated that a transistor, which is implemented using graphene and boron nitride, supports a negative differential conductance that can be tuned by changing the gate voltage [13]. The first top-gated metal-oxide-semiconductor FET (MOSFET) with graphene has been manufactured to increase carrier mobilities [25]. Graphene has played a prominent role in the design of organic light-emitting diodes (OLEDs) [26], solar cells [27], antennas [28], [29], and frequency multipliers [30].

In addition to experimental investigation of graphene and graphene-based devices, their numerical modeling and simulation have been an important research topic. The Kubo formula provides an analytic expression for the graphene’s conductivity and shows that it is a function of several physical parameters including wavelength, temperature, and chemical potential [31], [32]. Moreover, a surface conductivity model, which describes graphene as an infinitesimally thin (two sided) sheet with a local and isotropic conductivity, has been proposed. This model permits derivation of analytical expressions for the electromagnetic field in the presence of a graphene sheet in terms of a dyadic Green function (represented using Sommerfeld integrals) and exciting electric current [33], [34]. Even though these analytical models and methods can provide results for several canonical problems for benchmarking purposes, many practical problems involving graphene, such as design of arbitrarily shaped electromagnetic devices, are analytically intractable. With the recent advances in the field of computational electromagnetics (CEM), various accurate and efficient numerical methods have become available for analysis of electromagnetic field/wave interactions on graphene sheets and/or graphene-based devices [35]. These simulations tools are indispensable components of the design frameworks; they provide constructive guidance that significantly accelerates the design and fabrication process which would rely on experimental trial and error otherwise. Review papers on experimental investigation of graphene’s properties, graphene-based devices, and their applications are widely available [36]–[39]. However, a comprehensive summary of computational tools developed for analyzing graphene-based devices/systems is not found in the literature. The purpose of this review paper is to fill this gap.

In this review article, we focus on recent numerical methods that are formulated and implemented for analysis of electromagnetic field/wave interactions on graphene sheets and graphene-based devices. We discuss advantages and disadvantages of these methods and provide several numerical examples from several influential works to demonstrate their applicability in real-life engineering applications.

II. Simulation Methods for Graphene

In the last few decades, increasing CPU speed and availability of memory on computers as well as the development of new efficient and accurate algorithms have rendered electromagnetic simulation tools more applicable than ever. To analyze electromagnetic field/wave interactions on graphene sheets and graphene-based devices, one can use several different frequency domain (FD) and time domain (TD) numerical methods including finite-difference time-domain method (FDTD), discontinuous Galerkin time-domain method (DGTD), finite element method (FEM), and method of moments (MoM). These methods discretize and solve Maxwell or Helmholtz equations or their integral equation representations. Regardless of the domain they operate in (frequency or time), these methods call for a mathematical model for graphene’s conductivity. This mathematical model is described in the next section, which is followed by the review of the numerical methods listed above.

A. Mathematical Model

Numerical methods listed above often model graphene as a thin surface with complex and frequency-dependent/dispersive conductivity. This frequency-dependence suggests that a frequency-domain analysis is more adequate since a time-domain method requires the additional step of converting frequency dependence into the time domain. The surface conductivity of graphene is often expressed using the Kubo formula [31], [33], [40]:

$$\sigma_d = \frac{je^2}{\pi \hbar^2} \left[-\int \int_0^\infty \frac{fd(-\varepsilon) - fd(\varepsilon)}{(\omega - j2\Gamma)^2 - 4(\varepsilon/\hbar)^2} d\varepsilon \right]$$

$$+ \frac{1}{(\omega - j2\Gamma)^2} \int_0^\infty \varepsilon \left(\frac{\partial fd(\varepsilon)}{\partial \varepsilon} - \frac{\partial fd(-\varepsilon)}{\partial \varepsilon} \right) d\varepsilon$$

(1)

where \(\omega\) is the radian frequency, \(\Gamma\) is the phenomenological electron scattering rate (in some literature, the phenomenological electron relaxation rate/time \(\tau = 1/(2\Gamma)\) is used to substitute \(\Gamma\)), \(e\) is the electron charge, \(\varepsilon\) is the energy state, and \(\hbar\) is the reduced Plank constant. \(fd = (e^{(e-1)|\mu|}/k_BT + 1)^{-1}\) is the Fermi-Dirac distribution, where \(T\) is the temperature, \(k_B\) is the Boltzmann constant, and \(\mu\) is the chemical potential (also called Fermi energy) that can be adjusted by the electrostatic bias field, chemical doping, or carrier density. The first and second terms in (1) are due to intraband and interband contributions, respectively. The expression of the intraband contribution reads

$$\sigma_{d, \text{intra}} = -\frac{je^2 k_B T}{\pi \hbar^2 (\omega - j2\Gamma)} \left(\frac{\mu c}{k_B T} + 2 \ln \left(e^{\frac{\mu c}{k_B T}} + 1 \right) \right)$$

(2)
The expression of the interband contribution reads

\[
\sigma_{d,\text{inter}} \simeq \frac{-je^2}{4\pi\hbar} \ln \left(\frac{2 |\mu_c| - (\omega - j2\Gamma)\hbar}{2 |\mu_c| + (\omega - j2\Gamma)\hbar} \right)
\]

(3)

The interband conductivity is on the order of \(e^2/\hbar\) and smaller than the intraband conductivity. At lower frequencies (i.e., THz region), electrons and holes near the band edges “block” the interband transitions. Graphene behaves like a conductive film and its conductivity (dominated by intraband contribution) can be described in the form of a simple Drude model.

For higher frequencies (i.e., infrared and visible region where \(\mu_c\) is much smaller than optical frequency \(h\nu\)), the graphene conductivity is barely dependent on \(\mu_c\) and \(h\nu\) [41]. At these frequencies, the electrons can gather enough excitation energy to jump from an inner band to an upper band and the graphene’s conductivity is dominated by interband contribution.

In addition, the formulas given in (1)-(3) are valid under the assumption that the collision rate of carriers (\(\tau^{-1}\)) is less than the frequency (\(\omega\)) and spatial dispersion of the EM fields (\(k\nu\)), i.e., \(\omega \gg k\nu, \tau^{-1}\) [42]. It should also be noted here that conductivities of other forms of graphene, such bilayer and multilayer cases are different than that of the monolayer graphene. The conductivity of monolayer and bilayer graphene has been discussed in [43]. The Hamiltonian decomposition, Landau-level structure, and conductivity of multilayer graphene have been investigated in [44]. Additionally, in [45]–[47], the optical and Hall conductivities of monolayer graphene have been studied.

It is clear from the above equations that graphene’s conductivity is a function of chemical potential, temperature, and frequency. This consequently means that the polarization, propagation and scattering characteristics of the electromagnetic waves interacting with the graphene can be tailored by adjusting these parameters.

Time-domain methods often model the dispersive conductivity of graphene [as shown in (1)-(3)] using an auxiliary difference equation (ADE) in an (unknown) equivalent polarization current. This equation is then solved together with Maxwell equations. The intraband conductivity, whose expression in frequency domain “looks” like a Drude model, is easily converted to time domain and expressed in terms of an ADE. However, the interband conductivity has a complex logarithmic form, and therefore transforming it into time-domain calls for more general approaches. The first one of these makes use of the Padé approximant spectral fitting model which is accurate only in the near infrared part of the spectrum [48]. The second approach is termed “vector fitting”, where a summation of rational functions (in Laplace domain) of complex conjugate pole-residues pairs, are used to approximate the interband conductivity in a broadband of frequencies. The resulting expression then is converted into time domain using the analytical inverse Laplace transform of the rational functions [49], [50].

B. Finite-Difference Time-Domain Method

The FDTD method, first invented by Yee [51] in 1966, is a robust time-domain method that discretizes the time-dependent Maxwell curl equations by approximating time and space derivatives using finite difference approximations. The unknown time-space samples of the fields/fluxes obtained by solving or through explicit updates of the resulting equations in a recursive manner in time. FDTD is straightforward to implement, suitable for parallel computation, provides results that are immediately ready for visualization, and being a time-domain method, produces wide-band information in a single execution. These advantages have rendered FDTD the first method of choice in many electromagnetic problems in a wideband of frequency ranging from radio frequency (RF) to optical frequencies, which require numerical characterization of transient, dispersive, and nonlinear field interactions [52], [53]. Consequently, it should not come as a surprise that FDTD has also become increasingly prevalent in the simulation of graphene based devices.

There three main approaches to modeling graphene in FDTD-based electromagnetic simulations: (i) A fine grid is used to discretize the graphene while taking into account its finite thickness. For this approach, the surface conductivity is transformed to an equivalent (complex) permittivity [54], (ii) A subcell FDTD is used to simulate the thin layers of graphene [55], (iii) An impedance boundary condition (IBC) that locally represents the field behavior on a graphene sheet with zero thickness is incorporated into FDTD [56], [57].

For the first approach, the 2D graphene surface is usually modeled as a 3D material but with a very thin layer with thickness \(h\). The conductivity of this layer is expressed as

\[
\sigma_{3D} = \frac{\sigma_d}{h}
\]

(4)

Then a traditional FDTD method can make use of an ADE technique to incorporate the Drude model for the graphene’s intraband conductivity while ignoring its interband counterpart. To incorporate the interband effects into the simulation, the complex conjugate dispersion material model [58] can be used. In addition, the conformal [59] and high-order modeling techniques [60] have been used together with the FDTD method to improve the accuracy of the simulation. Furthermore, an extended Lorentz model, which is represented in the form of an equivalent circuit [61], has been proposed to take magnetized graphene into account in FDTD simulations.

The thickness of a graphene layer is approximately 0.34 nm and the accuracy of the 3D conductivity [as described in (4)] reduces with increasing thickness. The nanoscale volumetric mesh resulting from the discretization of the graphene layer leads to a very small time step because of the Courant–Friedrich–Levy (CFL) stability condition. As a result execution time and memory requirement of the traditional fully explicit FDTD method increases. To alleviate this bottleneck, various unconditionally stable time marching schemes, such as the alternating-direction-implicit (ADI) FDTD method and the locally one-dimensional (LOD) FDTD method, have been developed. These algorithms remove or relax the limitations of the CFL condition. The one-step leapfrog ADI-FDTD method
Fig. 1. Transmission coefficient for a plane wave normally incident on an infinite graphene sheet as computed using HIE-FDTD, traditional FDTD, and an analytical expression. Reproduced with permission from [70], Copyright IEEE, 2015.

has been applied to simulation of surface plasmon polaritons (SPPs) propagating along a graphene slab biased by an electrostatic field [62] and the LOD-FDTD method has been used to model more complicated graphene devices [63]. Additionally, a matrix exponential FDTD method has been developed to reduce the memory requirements of the traditional FDTD method when applied to fine volumetric grids discretizing a magnetically biased graphene layer [64].

While simulating a very thin structure like graphene using the FDTD method, the computational efficiency is restrained by the finest grid size only in one dimension. Therefore, it is sufficient to use implicit FDTD updates/iterations only in this dimension while keeping them explicit in the remaining two dimensions. This approach increases the efficiency by avoiding unnecessary implicit updates and relaxing the CFL condition for the explicit one in one dimension. To this end, several weakly conditional stable (WCS) FDTD methods have been developed. Examples of these include the WCS-FDTD method [65] and the hybrid implicit-explicit (HIE) FDTD method [66], [67]. Additionally, the HIE-FDTD has been updated to account for dispersive material properties and used in design of a graphene-based absorber [54] and polarizer [68]. Similarly, a graphene-based absorber has also been simulated using the WCS-FDTD method [69].

Furthermore, a conformal version of the HIE-FDTD method has been developed to analyze tunable graphene-based couplers for THz applications [70]. As shown in the inset of Fig. 1, the graphene sheet is located on the xy plane and excited by a planar wave polarized along the x-direction. The excitation is introduced in the FDTD method using the total-field/scattered-field (TF/SF) technique. The parameters of graphene are selected as $\mu_c = 0.1$ eV, $T = 300$ K, and $\tau = 1$ ps. The convolution perfectly matched layer (CPML) is used to truncate the unbounded background medium in the z-direction and a periodic boundary condition (PBC) is enforced along the x and y directions to model an infinitely wide graphene plane.

Fig. 1 plots the transmission coefficient versus frequency as computed using HIE-FDTD, traditional FDTD, and an analytical expression. All results are in good agreement. The execution times required by HIE-FDTD and FDTD are 157 and 613 s, respectively, demonstrating the efficiency of the HIE-FDTD method. Fig. 2(a) provides the schematic description of a graphene-based patch coupler, with its backside being grounded. The dielectric constant and thickness of the substrate are $\varepsilon_r = 2.33$ and $t = 2 \mu m$, respectively. The width of the graphene strip is $W = 12 \mu m$, and radii of the circular sector patches are $R_1 = 20 \mu m$ and $R_2 = 25 \mu m$. The parameters of graphene are $\mu_c = 0.5$ eV, $\Gamma = 0.41$ meV/h, and $T = 300$ K. A vertical electric field is generated by a sinusoid modulated Gaussian pulse in the rectangular region underneath Port 1 along the z-direction. The S-parameters are computed using $[S] = \frac{[V]^r}{[V]^i}$, where $[V]^r$ and $[V]^i$ are the reflected and incident voltage vectors recorded at the ports, respectively. The S-parameters computed using the conformal HIE-FDTD with coarse mesh (symbols), the staircase HIE-FDTD with coarse mesh (dashed line), and the staircase HIE-FDTD with fine mesh (solid line) [reference results] are shown in Fig. 2(b). The results obtained from the conformal method agree well with the reference results. However, the results of the staircase method with coarse mesh are significantly different than the other two.

As mentioned above, the second approach to modeling graphene using the FDTD requires subcell techniques to be implemented. The subcell FDTD method [55] has been
first used in simulation of dispersive thin layers and it has been immediately recognized as an effective way to model graphene [71]. The subcell technique is an efficient approach since a coarse mesh can be still used, and the thin layer only occupies a fraction of the grid. As a result, the memory requirements remain almost unchanged after the insertion of the layer which fills only a small amount of the computation space. Since two kinds of materials exist in one cell at the same time, this method divides the electric and magnetic components, which are normal to the graphene sheet, into two parts since they are not continuous across the interface. Conversely, tangential components do not require any splitting, due to their continuity across the boundary. Later on, aim at thin dispersive layers which is outstretched to the boundaries of the computational domain, a subcell perfectly matched layer (PML) scheme in FDTD is proposed [72].

The third approach represents the graphene sheet as an IBC with zero thickness (instead of conductive volume as done by the first approach) [56], [57]. This approach eliminates the need for a fine discretization/grid in the vicinity of the graphene sheet and alleviates the inefficiency that comes with it due to the CFL condition. The method has been first proposed in [56]. Fig. 3(a) shows a conductive (graphene) sheet positioned on the xy-plane that coincides with \(K + 1/2 \) indexed \(z \)-grid of a 3D FDTD Yee cell. The discontinuous boundary condition

\[
\vec{n} \times \left[2 \vec{H}(\omega) - \vec{I}(\omega) \right] = \sigma_0 \vec{E}_t(\omega) \tag{5}
\]

is enforced on the conductive sheet. Here, \(\vec{n} \) is the unit vector normal to the sheet, \(\vec{1} \vec{H} \) and \(\vec{2} \vec{H} \) are magnetic fields at its two sides, the superscripts 1 and 2 designate the bottom and top sides, respectively. \(\vec{E}_t \) denotes the component of the electric field tangential to the sheet. The boundary condition in (5) should be transformed into the time domain so that it can be used within an FDTD method [56]. To this end, the intraband conductivity is represented using a Drude-like model while the interband conductivity is expressed in terms of complex conjugate pole-residues pairs [57].

Note that the conductive sheet supports electric current and charge, therefore the tangential component of the magnetic field and the normal component of the electric field is split into two parts that are positioned at the bottom and top sides of the sheet. As a result, the FDTD update equations for \(1H_x^n \) and \(2H_x^n \) are obtained as

\[
\mu_1 \delta_t \{ 1H_x^n \} = \delta_y \{ E_{y}^n(i,j+1/2,k+1/2) \} - \delta_x \{ E_{x}^n(i,j+1/2,k+1/2) \} \tag{6}
\]

\[
\mu_2 \delta_t \{ 2H_x^n \} = \delta_x \{ E_{x}^n(i,j+1/2,k+1/2) \} - \delta_y \{ E_{y}^n(i,j+1/2,k+1/2) \} \tag{7}
\]

where \(\mu_1 \) and \(\mu_2 \) are the permeabilities of the media at the bottom and top sides of the sheet, \(\delta \) represents finite difference operation, the superscripts \(c, f \) and \(b \) designate the central, forward and backward difference, respectively; the subscripts \(t \) and \(x, y \) and \(z \) designate the derivates in time and along \(x, y, \) and \(z \)-directions, respectively. Similarly, the update equations for \(1E_z^n \) and \(2E_z^n \) are derived as

\[
1E_{z}^{n+1} = 1E_{z}^{n} + \frac{\Delta t}{\varepsilon_1} \left[\delta_y \{ 1H_{y}^{n} \} - \delta_y \{ 1H_{y}^{n+1} \} \right] \tag{8}
\]

\[
2E_{z}^{n+1} = 2E_{z}^{n} + \frac{\Delta t}{\varepsilon_2} \left[\delta_x \{ 2H_{x}^{n} \} - \delta_y \{ 2H_{x}^{n+1} \} \right] \tag{9}
\]

where \(\varepsilon_1 \) and \(\varepsilon_2 \) are the permittivities of the media at the bottom and top sides of the sheet. It should be mentioned here that the conductive surface boundary condition reviewed above has been extended to account for anistropic modeling of graphene sheets. The resulting boundary conditions have been used within FDTD to simulate EM interactions on magnetized graphene [73].

Fig. 3(b) plots the magnitude and phase of transmittance (T) and reflectance (R) computed by the FDTD (with resistive surface boundary condition as briefly explained above) for a plane wave normally incident on the graphene layer. The figure shows that the FDTD results agree well with those obtained using an analytical method.

At last, a periodic graphene micro-ribbon array has been simulated using the FDTD method with resistive surface boundary condition. The graphene array, which is assumed to extend to infinity along the \(x \)-direction and periodically-repeated along the \(y \)-direction, is shown in Fig. 4(a). A TE-polarized (electric field parallel to the \(y \)-direction) or TM-polarized (electric field parallel to the \(x \)-direction) planewave is normally incident on the structure. Fig. 5(a) plots the transmission through the structure for plane wave excitations with TE and TM polarizations. For TE polarization, a resonance peak is observed around 8.35 THz. This resonance is a result of the SPPs generated on the structure; the electric and magnetic field intensities at this resonance frequency are demonstrated in Fig. 4(b). The snapshot clearly shows that the effects of the SPP are still observed long after the TE polarized planewave pulse has passed the array. It should be noted here that the array can be used as a polarizer at this frequency. Fig. 5(b) shows that the transmission of the graphene micro-ribbon array resembles that of an infinite graphene sheet for the planewave with TM polarization.

In summary, the FDTD-based approach that assumes zero thickness for the graphene sheet and models it as an IBC is often considered as the most effective one among the three types of FDTD methods reviewed in this section. This is simply because it avoids the very fine volumetric discretization of the graphene layer. Additionally, this approach uses an explicit time marching scheme, which does not call for matrix solutions, further reducing the computation time and memory imprint (in comparison to unconditionally or weakly stable time marching schemes). It should also be noted here that the subcell FDTD scheme also uses a coarse mesh in the vicinity of the graphene layer, but underlying formulation developed to implement two different materials co-existing in one cell “destroys” the simplicity of the FDTD schemes, which makes them attractive in the first place.
C. Finite Element Method

FEM is a powerful and versatile technique for numerically solving boundary-value problems. It treats equations and boundary conditions in a systematic and mathematically rigorous way allowing for straightforward implementation of general-purpose computer programs for solving a wide range of engineering problems. Unlike finite-difference based methods (such as FDTD as described in the previous section), it uses arbitrary meshes (for example with tetrahedral, hexahedral, or prism elements) to discretize computation domains involving geometrically complex structures with potentially inhomogeneous material properties [74]. There are four basic steps involved in the finite element analysis:

- Discretize the computation domain into a finite number of non-overlapping elements
- Select a proper set of basis/interpolation functions to expand unknown variables
- Formulate a system of equations using Ritz variational or Galerkin method
- Solve the resulting system of equations

Several successful commercial software making use of FEM has been developed in the last several decades as it has become a maturing numerical tool widely used in the field of electromagnetics. Three very well-known examples of such commercial software are CST MICROWAVE STUDIO [75], COMSOL [76], and high-frequency structure simulator (HFSS) [77]. A plethora of examples on the use of these softwares for analyzing electromagnetic field/wave interactions on graphene exist in literature. Please see [78]–[82] for some of those. It should be noted here that in the application of these commercial software to the EM simulation of graphene, graphene sheet is often modeled as any other material, i.e., as a finite-thickness layer with a certain volumetric conductivity value. To alleviate the increased computational requirements
that come with this approach, techniques relying on impedance transmission boundary condition (ITBC) [83] and impedance network boundary condition (INBC) [84] to model thin layers of graphene have been into FEM.

It should also be noted here that the approaches and commercial tools mentioned above rely on FD-FEM that directly works with conductivity values of graphene at the frequency of interest. For an FEM operating in time domain (i.e., TD-FEM), the dispersive conductivity expression has to be converted into time domain, just like it is done with FDTD. But note that the reason why TD-FEM is not the first method of choice for transient EM simulations of graphene is the fact that it requires the inversion of a sparse matrix system every time step. This can be avoided using DGTD as described in the next section.

D. Discontinuous Galerkin Time-Domain Method

The DGTD method [85]–[87] combines the advantages of the finite-volume method (FVM) [88] and FEM and it has been successfully applied in various fields of computational sciences, engineering, and physics for solving different partial differential equations. Like FEM, the discretization of the computation domain can be done using an arbitrary mesh and high-order accuracy convergence can be obtained using high-order basis functions. Like FVM, all spatial DGTD operations are localized since numerical flux is enforced on the surface of a given discretization element to “realize” information flow from/to its neighboring elements. This localization translates into a global mass matrix being divided into block-diagonal mass matrices. The inversion and storage of these mass-matrix blocks (as would be constructed by the finite element time-domain (FETD) method [89]) are carried out before the time marching starts. This renders the resulting DGTD-based solver very compact (efficient with a very small memory imprint) especially when an explicit integration method is used for time marching. Additionally, the use of numerical flux and the resulting spatial localization allow for non-conformal meshes to discretize the computation domain and make it easy to implement adaptive h and/or p refinement schemes and parallelization on distributed memory computer clusters. Because of the properties listed above, the DGTD is the natural method of choice for multiscale electromagnetic simulations involving thin sheets of graphene.

The approach, which makes use of resistive boundary condition (RBC) and is originally developed for the FDTD method, can also be implemented within the DGTD method for efficient simulation of graphene sheets [90]. This implementation can be summarized as follows: First a numerical flux, which takes into account the fields satisfying the RBC, is reformulated from the Rankine-Hugoniot condition [90]. The conductivity of graphene is approximated as a summation of rational functions (of frequency) using the fast-relaxation vector-fitting (FRVF) method [91]. Then, applying inverse Laplace transform to this summation, the corresponding time-domain matrix equations are obtained. These equations are solved using the time-domain finite integral technique (FIT). For elements not touching the graphene sheet, however, the well-known Runge-Kutta (RK) method is employed to solve the two first-order time-derivative Maxwell equations as done with a “traditional” DGTD method.

This RBC-enhanced DGTD scheme is further improved for electromagnetic numerical characterization of magnetically biased graphene that has an anisotropic and dispersive surface conductivity (caused by Lorentz force). This improvement makes use of an auxiliary surface polarization current governed by a first-order time-dependent partial differential equation (PDE) that is enforced on the graphene, and is instrumental in obtaining an isotropic and simultaneously non-dispersive RBC. As a consequence, a numerical flux, which is isotropic and does not call for temporal convolution computations during the solution of the final system of equations, is obtained. The applicability and accuracy of the this method are demonstrated through its application to the transient simulation of magnetized graphene for a wideband changing from microwave to THz frequencies [92]. These simulations are briefly described below.

For the first example, an infinitely large graphene sheet located on the xy plane is biased by a z-directed magnetostatic field \(\mathbf{B}_0 = 2B_0 \). The chemical potential and scattering time are set as \(\mu_c = 0.5 \) eV and \(\tau = 5 \times 10^{−12} \) s, while the magnetic biasing amplitude \(B_0 \) is changed in the range [0.5, 30] T. Figs. 6(a) and (b) plot the total transmission coefficient and the Faraday rotation angle obtained using DGTD and compare them to those computed by analytical methods. Additionally, the cross-polarized transmission coefficient obtained using DGTD is provided in Fig. 6(c). These results demonstrate that the behavior of an electromagnetic wave propagating through a graphene sheet is clearly influenced by the magnetostatic biasing.

For the second example, first an unmagnetized graphene patch is simulated using the DGTD scheme to further verify the accuracy via comparison of the results with those obtained by an integral equation (IE) solver (see next section). Fig. 7(a) plots the extinction cross-section (ECS) computed by these two methods; the results agree well. It should be noted here that, the DGTD method uses the time-domain boundary integral (TDBI) algorithm to accurately truncate the computation domain. Then, the same graphene patch is simulated again but this time under a z-directed biasing (static) magnetic field \(B_0 = 0.25 \) T. Figs. 7(b) and (c), respectively, plot the total scattering cross-section (TSCS) and ECS for different values of the chemical potential \(\mu_c \), demonstrating the effects of the plasmon resonances on the scattering characteristics of the graphene patch. It can be concluded that the plasmon resonance becomes stronger and its frequency has a blue shift as the chemical potential is increased. Furthermore, the effect of the substrate on the plasmon resonance is investigated using the DGTD method. Three materials are considered as the substrate of the graphene patch (with \(\mu_c = 0.5 \) eV): silicon (Si) with \(\varepsilon_r = 4.0 \), silicon-dioxide (SiO\(_2\)) with \(\varepsilon_r = 7.0 \), and silicon-nitrate (Si\(_3\)N\(_4\)) with \(\varepsilon_r = 11.9 \). Normalized ECS of the graphene patch for different types of substrate is shown in Fig. 7(d). The figure shows that a red shift happens at the first two peaks of the plasmon resonance as the permittivity of the substrate is increased. This can be explained by the fact that
an increase in permittivity effectively increases the dimension of the graphene in terms of wavelength.

Furthermore, to account for spatial dispersion effects associated with graphene (which are observed when its conductivity is modeled as nonlocal and a function of spectral wavenumber (momentum operator) \(q \)), a nonlocal transparent surface impedance boundary condition (SIBC) has been incorporated into the DGTD method. Since there is no exact time-domain SIBC that can be utilized to model the complex conductivity which is now a function of \(q \), it is approximated using a Taylor series expansion in spectral domain under the low-\(q \) assumption. This facilitates the formulation of a second-order PDE in electric field and current density that is solved together with Maxwell equations using the DGTD method. The nonlocal properties of GNRs have been simulated by this DGTD framework [22].

In addition to RBC and SIBC, in [93], the impedance transmission boundary condition (ITBC) has been used within a wave-equation based DGTD with the same purpose of avoiding a very fine mesh around and inside the graphene layer.

E. Method of Moments

Method of Moments (MoM) [94] is a numerical technique that is used to solve surface integral equations (SIEs) by converting them into a linear matrix system of equations as briefly explained next: Using equivalence principle, the scatterers consisting of dielectric/perfect electrically conducting bodies
are “effectively” replaced by equivalent electric and magnetic current densities introduced on their surfaces. Then the scattered fields are represented as convolutions of these unknown current densities and the Green functions of the unbounded media with the material properties of the background and/or the dielectric bodies. SIEs in these unknown current densities are constructed on the interfaces using boundary conditions on the total (incident plus scattered) electric and magnetic fields. Unknown current densities are expanded using basis functions. Inserting these expansions into the SIEs and testing the resulting equation (for example using Galerkin scheme) yield the MOM matrix equation. The SIE solvers have several advantages over Maxwell equation solvers (such as FEM): They only discretize the surface of the scatterers, effectively reducing the dimension of the problem from three to two. They implicitly enforce the radiation condition therefore do not call for approximate methods to truncate (unbounded) physical domains into computation domains. One disadvantage of the SIE solvers is that the matrix resulting from the discretization of the SIE is dense, which increases the computational cost of the matrix solution. However, with the development of fast solvers (such as multilevel fast multipole method (MLFMM) [95] and adaptive integral method (AIM) [96], this bottleneck is no longer prohibitive in solving large-scale practical problems. Consequently, SIE solvers have become prime candidates for simulating graphene-based electromagnetic devices and systems.

In [98], the SIBC associated with the graphene is cooperated into SIEs and the resulting set of equations are solving using the Nyström method. The simulation of graphene strips, which is carried out using this method, shows that the surface plasmon resonances can be tailored by tuning the chemical potential and relaxation times of graphene [98]. Then, a further discussion of THz wave scattering from graphene strips and disks is presented to demonstrate that the chemical potential of graphene can adjust the wavelength of plasmon resonance in the THz waveband [99]. Furthermore in [100], [101] the properties of graphene nanoribbons are analyzed using another SIE solver.

Another method that has been developed to model graphene within SIE solvers assumes that it has a finite thickness of 0.5 nm [97]. Then an SIE solver, which uses a multilayered medium Green function (instead of the unbounded medium Green function as explained at the beginning of this section) is used to simulate the structure shown in Fig. 8. This structure involves a split-ring resonator (SRR) embedded in a layer of ZnO and a graphene layer located between the ZnO layer and a layer of SiO$_2$ substrate. The dimensions of the SRR are optimized to make sure that the graphene plasmonics and metallic plasmonics overlap in the same part of the frequency spectrum. In the first set of simulations, graphene layer is removed and Fig. 9(a) demonstrates that only the x-oriented dipole source can “couple” to the SRR as shown by the photon decay rate. It can be seen from Fig. 9(b) that the position of the source only affects the amplitude of the decay rate’s peak but has no effect on its frequency. In the second set of simulations, the graphene layer is introduced into system. As shown by Fig. 9(c), the amplitude of the photon decay rate is enhanced especially in the proximity of the graphene layer. The dependence of the decay rate on the chemical potential of the graphene is shown in Fig. 9(d). The photon decay rate is not only blue-shifted but also splits into several peaks due to a strong coupling between the SRR and the graphene.

Furthermore, in [102], a marching-on-in-time (MOT) scheme has been developed to solve time domain SIEs enforced on interfaces of a graphene-based devices. In addition, in [103], graphene layer has been modeled as a thin dielectric sheet (TDS) (with dispersive conductivity) within an MOT solver. This approach “converts” the time-domain volume integral equation (TD-VIE) equation into a TD-SIE and eliminates the need for a very fine volumetric mesh inside the graphene layer. These MOT solvers methods can be thought as time-domain MoM.
Fig. 10. (a) A one-cell PEEC model for a nonmagnetized graphene patch. (b) Unit model for uniform PEEC cell of nonmagnetized graphene. (c) The complete equivalent circuit for anisotropic graphene. Reproduced with permission from [105] and [106], Copyright IEEE, 2016.

F. Partial Element Equivalent Circuit Method

The partial element equivalent circuit (PEEC) method [104], which is developed using potential-based volume integral equation formulations and the charge-current continuity equation, has often been used in electromagnetic simulation of integrated circuits. However, with recently increasing interest in graphene-based devices, it has been improved to take into account graphene sheets.

To this end, a surface conductivity circuit model consisting of a resistor, an inductor, and an impedance element is introduced into the PEEC method to efficiently characterize graphene [105]. This is effectively equivalent to enforcing an impedance boundary condition on the graphene surface. Fig. 10(a) illustrates one-cell of the PEEC model for the graphene patch, the circuit elements inside the red rectangle approximate the non-magnetized graphene’s impedance caused by the conduction loss. The resistance R_r and inductance L_r represent the intraband contribution while the complex impedance Z_{inter} corresponds to the interband contribution. $V_{m(k)}^L$ is the voltage source representing the external electric field, $V_{j(j)}^C$ and $V_{j(j)}^C$ are the voltage control voltage sources (VCVSs), P_{mm} and $P_{mm+1,m+1}$ are the potential self-coefficients for the circuit model. Fig. 10(b) demonstrates the PEEC circuit model for the non-magnetized graphene patch. It shows that there are four current filaments sharing the same common node in the PEEC partition and each branch is a simplification of the circuit given in Fig. 10(a). To model the anisotropy of graphene under a magnetostatic bias, the resistive part of the unit circuit is replaced by a resistor in series with current-controlled voltage sources (CCVSs) [106]. The complete equivalent circuit which combines x and y-directional resistive cell for anisotropic graphene is sketched in Fig. 10(c).

In [106], PEEC is used to simulate EM interactions on a magnetized graphene patch of dimensions $10 \times 2\mu m^2$. The graphene patch is illuminated by plane wave propagating the z-direction and linearly polarized along the length of the patch. Biasing static magnetic field is z directed with an amplitude of 0.25 T. Figs. 11 (a) and (b) the σ_{abs} (absorption cross section) and (b) σ_{ext} (extinction cross section) of the magnetized graphene patch computed using PEEC [106] and DGTD [92]. The results are in good agreement validating the accuracy of these two methods.

Furthermore, in [107], a time-domain solver making use of the PEEC model has been developed for wideband electromagnetic simulations of graphene-based devices.

III. SUMMARY AND COMPARISON

The previous section, Section II, gives a rather detailed review of numerical tools developed for simulation of EM interactions on graphene sheets and graphene-based devices.
In this section, the important points of this review are summarized.

A. Summary of IBCs

To this date, three main groups of IBC formulations have been developed to model to thin layers of materials: (i) surface impedance boundary condition (SIBC) (which is also termed SBC [56] or RBC [92]), (ii) ITBC [83], and (iii) INBC [84].

The SIBC is formulated under the assumption that the variation of the fields inside the thin conductor layer is linear and larger than the variation of the fields along its surface. As a result, the SIBC technique requires that the layer thickness to be smaller than the skin depth inside the layer. As detailed in the paper, this technique has been successfully used to model graphene sheets within FDTD, DGTD, MOT, and PEEC methods at the THz frequency band. For lower frequencies, the graphene layer’s thickness becomes larger than the skin depth, and therefore it becomes almost transparent to the electromagnetic fields [83]. For such cases, the ITBC formulation, which is derived using the transmission line theory, is more suitable to model the tangential electromagnetic fields on both sides of the graphene surface. The INBC technique, which describes the field inside a conductive sheet using two-port network equations, has a wider range of applicability in modeling good conductor layers (i.e., \(\sigma \gg \omega \epsilon \)) than the SIBC and the ITBC since it is not restricted by the skin depth.

B. Methods for EM Simulation Graphene

FD methods can directly use conductivity values of graphene obtained via experiments or calculated using the mathematical expression at the frequency of interest. But they are limited to single-frequency or narrow-band problems. From this perspective, TD methods have an advantage over FD methods since they can produce broadband results with a single execution of the simulation. However, since the graphene’s conductivity is dispersive, it has to be “converted” into time domain using the Drude model or some variation of “vector fitting” schemes. Both FD and TD methods can benefit from IBC-based techniques to avoid generation of a very fine mesh around and inside the graphene layer.

FDTD and PEEC, by design, use orthogonal grids to discretize the geometries and Maxwell equations. This leads to additional staircase approximation errors, when they are used in analyzing graphene based devices with curved surfaces. On the other hand, FEM (both FD and TD versions), DGTD, MoM, and MOT, which use triangular and/or tetrahedral elements, can account of arbitrary geometries more accurately. Even though the SIE formulation used by MoM and MOT reduces the dimension of the problem from three to two (from volume to surface modeling), their computational requirements increase significantly for electrically large devices. In this case, one has to use a fast solver, such as MLFMM [95] and AIM [108] in frequency domain and plane-wave time-domain method (PWTD) [109] and TD-AIM [96] in time domain.

In short, for simulating EM interactions on graphene sheets and graphene based devices, one often chooses FEM and DGTD for their ability to model arbitrary geometries which helps with increasing the accuracy of the solution and the FDTD due to its simplicity which eases the burden of implementation.

IV. Future Research Directions

In many EM applications that benefit from graphene’s electrical properties, device sizes are getting smaller at nano-scales and optical operation frequencies are becoming the norm. In such scenarios, a rather simplified graphene conductivity model as revised in this paper may not be accurate enough. For example, at lower frequencies where, traditional integrated circuits (ICs) are operated, both photon and thermal excitation energies of graphene are much weaker than its Fermi energy, therefore the intraband transitions become dominant over interband transitions. As a result, a simplified steady-state model making use of the intraband contribution in Kubo formula is commonly used to describe graphene’s conductivity. This Drude-type model is from the Boltzmann transport equation and the Ohm law under several assumptions. However, it has been recently reported that for high-frequency simulation of Cu-G hybrid nano-interconnects (which are orders of magnitude smaller than regular interconnects), this model is not accurate [110], [111]. This is because graphene’s skin depth becomes comparable to its mean free path (MFP), the carriers are no longer influenced by a constant field between collisions, and the current at a given point also depends on the electric field at other points. To address this challenge, in [110], [111], a first-principles based solver has been developed to solve a coupled system of Maxwell and Boltzmann equations to characterize EM interactions on graphene. This solver provides more accurate results as compared to the numerical scheme that account for graphene with an effective conductivity model. It is worth mentioning here that this approach is fully aligned with recent research directions in other branches of computational sciences where development of multiphysics and multiscale simulations are deemed important.

Another challenging direction is to develop numerical schemes that can accurately account for the nonlinearity of graphene’s susceptibility. This is especially important with graphene becoming a building block in plasmonic device design. In such designs, highly-localized and strong EM fields “activate” the nonlinear response of the graphene. For example, in [112], a graphene metasurface has been studied using FDTD that accounts for the nonlinear susceptibility effects using a homogenization scheme. In [29], Maxwell equations are complemented by a nonlinear auxiliary equation (describing current-field relationship on graphene sheet), and this coupled system is solved using FDTD to analyze EM/plasmonic interactions on a nanoantenna with the metal-insulator-graphene configuration. In [113], [114], the nonlinear properties of graphene is studied again using FDTD which is developed based on the quasi-classical (Boltzmann) approach [115], [116].

V. Conclusions

In the last decade, graphene’s excellent electrical and mechanical properties have made it a focus of significant research
interest. Scientific literature has been flooded with theoretical studies of graphene’s properties and the physical mechanism behind those as well as investigations of its practical use in various fields of engineering.

In this paper, we review a few of the most popular numerical algorithms from the research field of CEM and some of their recent adaptations formulated and implemented for efficient and accurate simulation of graphene-based devices.

REFERENCES

