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The distributions of �ow topologies within the �ames representing the corrugated
�amelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent
combustion are investigated using direct numerical simulation data of statistically planar
turbulent H2-air �ames with an equivalence ratio� = 0.7. It was found that the diminishing
in�uence of dilatation rate with increasing Karlovitz number has signi�cant in�uences on
the statistical behaviors of the �rst, second, and third invariants (i.e.,P , Q, andR) of the ve-
locity gradient tensor. These differences are re�ected in the distributions of the �ow topolo-
gies within the �ames considered in this analysis. This has important consequences for those
topologies that make dominant contributions to the scalar-turbulence interaction and vortex-
stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively.
Detailed physical explanations are provided for the observed regime dependences of
the �ow topologies and their implications on the scalar dissipation rate and enstrophy
transport.

DOI: 10.1103/PhysRevFluids.1.083401

I. INTRODUCTION

Turbulent �ow �elds often exhibit organized �ow topologies in spite of their apparent
chaotic nature. Perry and Chong [1] and Chonget al. [2] assigned all possible local small-scale
three-dimensional �ow topologies to eight categories based on the invariantsP,Q, and R of
the velocity-gradient tensorAij = �u i /�x j , whereui is the i th component of velocity vector.
The topologies, denoted byS1ŠS8, distinguish eight regions in the three-dimensionalPŠQŠR
phase space, as described in Fig.1. Several previous studies [3–8] analyzed the �ow properties
in the QŠR plane for incompressible �uids (i.e.,P = Š � · �u = 0). For compressible �ows
(P �= 0), however, one needs to account forPŠQŠR space [9–12]. The analyses of topologies in
nonreacting compressible �ow turbulence have indicated that the unstable node-saddle-saddle and
stable focal-stretching topologies in theQŠR plane dominate over other topologies.

In comparison to the large body of literature on local �ow topologies in nonreacting turbulent
�ows, relatively little attention has been paid to their analysis in turbulent reacting �ows [13–16].
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S1: UF/C S2: UN/S/S S3: SN/S/S S4: SF/ST

S5: SF/C S6: SN/SN/SN S7: UF/ST S8: UN/UN/UN

FIG. 1. Shown on top is the classi�cation ofS1ŠS8 topologies in theQŠR plane for (left to right)P > 0,
P = 0, andP < 0. The linesr1a (red),r1b (blue), andr2 (green) dividing the topologies are shown. Black dashed
lines correspond toQ = R = 0. The bottom shows the classi�cation ofS1ŠS8 topologies: UF, unstable focus;
UN, unstable node; SF, stable focus; SN, stable node; S, saddle; C, compressing; and ST, stretching.

Tanahashiet al.[13] usedQ to distinguish strain-dominated and vorticity-dominated regions in a pre-
mixed �ame and concluded that the vorticity vector remains perpendicular to the �ame normal vector
and that small-scale turbulence can survive even beyond the �ame front. Groutet al.[14] analyzed the
local �ow topology of a nonpremixed jet in cross�ow and reported that the highest heat release rates of
the �ame are associated with the regions withS8 topology. Recently, Cifuenteset al.[15,16] analyzed
the topology distribution in a premixed turbulent �ame based on a simple chemistry direct numerical
simulation (DNS) database representing the �amelet combustion and demonstrated that the probabil-
ity of �nding focal (i.e., vortical) topologies decreases from the unburned gas side to the burned gas
side. However, the differences in �ow topology distribution within the �ame for different regimes of
premixed turbulent combustion are yet to be analyzed in the existing literature. These differences have
important consequences on the scalar-turbulence interaction and vortex-stretching terms in the scalar
dissipation rate and enstrophy transport equations, respectively [17,18]. Thus, the main objectives
of this paper are (a) to identify the differences in the distribution of �ow topologies in turbulent
premixed �ames representing different regimes of combustion and (b) to indicate the implications of
the differences in topology distributions on the scalar-turbulence interaction and vortex-stretching
terms.

A three-dimensional DNS database of statistically planar turbulent premixed H2-air �ames
with equivalence ratio� = 0.7 [19] has been considered spanning different regimes of premixed
combustion. The rest of the paper will be organized as follows. The mathematical background
and numerical implementation pertaining to the current analysis will be presented in the next
section. This will be followed by presentation of results and their subsequent discussion. Finally,
the main �ndings will be summarized and conclusions will be drawn in the �nal section of this
paper.
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II. MATHEMATICAL BACKGROUND AND NUMERICAL IMPLEMENTATION

Premixed combustion is often characterized using the nondimensional temperaturecT =
(T Š T0)/ (Tad Š T0), which increases from zero to unity from unburned to burned gases, where
T, T0, andTad are the dimensional, unburned gas, and adiabatic �ame temperature, respectively. The
local �ow topologies can be characterized by the invariants of the velocity-gradient tensor [1,2] Aij =
�u i /�x j = Sij + Wij , whereSij = 0.5(Aij + Aj i ) andWij = 0.5(Aij Š Aji ) are the symmetric and
antisymmetric components, respectively. Three eigenvalues� 1, � 2, and� 3 of Aij are the solutions
of the characteristic equation� 3 + P � 2 + Q� + R = 0, whereP, Q, andR are the invariants of
Aij [1,2]:

P = Š (� 1 + � 2 + � 3), Q = 0.5(P2 Š Sij Sij + Wij Wij ),

R = (ŠP3 + 3P Q Š Sij Sjk Ski Š 3Wij Wjk Ski )/ 3. (1)

The discriminantD = [27R2 + (4P3 Š 18P Q)R + 4Q3 Š P2Q2]/ 108 of � 3 + P � 2 + Q� +
R = 0 divides thePŠQŠR phase-space into two regions: ForD > 0 (D < 0), Aij displays a focal
(nodal) topology [1,2]. The velocity gradient tensor shows one real eigenvalue and two complex
conjugate eigenvalues for focal topologies. By contrast, the velocity gradient tensor exhibits three
real eigenvalues for nodal topologies. The surfaceD = 0 gives rise to two subsetsr1a andr1b in
PŠQŠR phase space, which are given by [1,2] r1a = P(Q Š 2P2/ 9)/ 3 Š 2(Š3Q + P2)3/ 2/ 27
andr1b = P(Q Š 2P2/ 9)/ 3 + 2(Š3Q + P2)3/ 2/ 27. In the regionD > 0,Aij has purely imaginary
eigenvalues on the surfacer2, which are given byR = P Q. The surfacesr1a, r1b, andr2, wherer2
is described byP Q Š R = 0, divide thePŠQŠR phase space into eight �ow topologies, as shown
in Fig. 1.

A three-dimensional DNS [19] database of freely propagating statistically planar turbulent H2-air
premixed �ames with� = 0.7, employing a detailed chemical mechanism [20] with nine species
and 19 chemical reactions, is considered here. An equivalence ratio of 0.7 is chosen because the
H2-air mixture for this equivalence ratio is known to be thermodiffusively neutral [21] such that
the additional effects of preferential diffusion are eliminated. The unburned gas temperatureT0 is
taken to be 300 K, which yields an unstrained laminar burning velocitySL = 135.6 cm/ s under
atmospheric pressure. The DNS code solves fully compressible Navier-Stokes equations where
spatial discretization is carried out by an eighth-order central difference scheme for internal grid
points and the order of differentiation gradually decreases to a one-sided fourth-order scheme [19].
A fourth-order Runge-Kutta scheme is used for explicit time marching [19]. The �ame is initialized
by a one-dimensional steady initially planar laminar �ame pro�le [22]. A precomputed auxiliary
divergence-free, homogeneous, isotropic turbulence �eld is generated using a pseudospectral
method [23] following the Passot-Pouquet spectrum [24] and is injected through the inlet. The
mean inlet velocity has been changed gradually to match turbulent �ame speed as the simulation
progresses. In order to assess the extent to which the �ames in this study can be quali�ed as
statistically stationary, the temporal evolution of �ame area has been monitored and the �ame is
considered to be statistically stationary when the �ame area no longer varies with time. Turbulent
in�ow and out�ow boundaries are taken in the direction of mean �ame propagation and transverse
boundaries are taken to be periodic. The nonperiodic boundaries are speci�ed using an improved
Navier-Stokes characteristic boundary condition technique [25].

The in�ow values of normalized root-mean-square turbulent velocity �uctuationu�/SL , turbulent
length scale to �ame thickness ratiolT /� th, Damk̈ohler number Da= lT SL /u �� th, Karlovitz number
Ka = (� 0SL � th/µ 0)0.5(u�/SL )1.5(lT /� th)Š0.5, and turbulent Reynolds number Ret = � 0u�lT /µ 0 for all
cases are presented in TableI, whereµ 0 is the unburned gas viscosity,� th = (Tad Š T0)/ max|� T |L
is the thermal �ame thickness, and the subscriptL is used to refer to unstrained laminar �ame
quantities. The turbulent length scalelT is the most energetic scale of the Passot-Pouquet spectrum.
The cases investigated in this study are nominally representative of three regimes of combustion:
case A, corrugated �amelets (Ka< 1); case B, thin reaction zones (1< Ka < 100); and case C,
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TABLE I. List of in�ow turbulence parameters.

Case u�/SL lT /� th Ret Da Ka

A 0.7 14.0 227 20.0 0.75
B 5 14.0 1623 2.8 14.4
C 14 4.0 1298 0.29 126

broken reaction zone regime (Ka> 100) [26]. It is worth noting from TableI that Ka in cases A–C
is not modi�ed independently of Da and Ret and thus the differences in behavior among cases A–C
should not be equated solely to the in�uences of Karlovitz number Ka. Instead, cases A–C, for the
purpose of this paper, should be considered as three typical representative scenarios of the corrugated
�amelet, thin reaction zone, and broken reaction zone regimes of premixed turbulent combustion,
respectively.

The domain size is 20× 10× 10 mm3 (8 × 2 × 2 mm3) in cases A and B (case C) and the domain
has been discretized by a uniform Cartesian grid of 512× 256× 256 (1280× 320× 320) cells. The
smaller domain for case C is justi�ed by the fact that the integral scalelT is smaller in case C than in
cases A and B (see TableI). The grid spacing was determined by the �ame resolution, ensuring about
ten grid points across� th, and in all cases the Kolmogorov length scale remains bigger than the grid
spacing (i.e.,� � 1.5�x , where� and�x are the Kolmogorov length scale and DNS grid spacing,
respectively). For this resolution about seven to nine grid points reside across the thinnest species
gradient. Case C has the highest value of turbulent Reynolds number and thus this case requires the
smallest grid spacing to resolve the Kolmogorov length and �ame thickness among all the cases
considered here. For the purpose of computational economy a smaller computational domain than
cases A and B has been chosen here for case C. Simulations have been carried out for 1.0te, 6.8te,
and 6.7te (i.e.,te = lT /u �) for cases A–C, respectively, and this simulation time remains comparable
to several previous analyses [15,16,27–29].

III. RESULTS AND DISCUSSION

Selected regions of instantaneous nondimensional temperaturecT , normalized �rst invariant
P � = P × (� th/SL ), second invariantQ� = Q × (� th/SL )2, and third invariantR� = R × (� th/SL )3

�elds when the statistics were extracted are shown in Fig.2. Figure2 also shows the �ame location
by the contour lines ofcT = 0.1,0.5,0.7 overlaid on the nondimensional temperature �eld. ThecT
contours clearly show the increasing level of �ame wrinkling as the turbulence intensity increases
from cases A to C. In cases A and B thecT isosurfaces lie close together, whereas in case C
they are both much farther apart and the distance between neighboring isosurfaces varies greatly.
This distinction is indicative of the different combustion regimes, which is often characterized in
terms of the Karlovitz number. The Karlovitz number can be scaled as Ka� � 2

th/� 2, where� is the
Kolmogorov length scale.

Since� th remains smaller than� in case A (� th � 0.9� and � r � 0.1� ), the �ame undergoes
no signi�cant velocity �uctuations, which are dissipated at scales of the �ame thickness. Eddies
with sizes above the Kolmogorov scale wrinkle the �ame. Since the reaction zone remains much
thinner (� r � 0.1� th) it retains its quasilaminar structure. In case B, on the other hand (� th � 3.8�
and� r � 0.4� ), eddies with sizes smaller than 4 times the Kolmogorov scale modify the internal
structure of the �ame thermal thickness, while the rest of the larger eddies only wrinkle the �ame.
Case C represents the broken reaction zone regime (� th � 11.2� and� r � 1.1� ), in which eddies
with sizes smaller than 11 times the Kolmogorov scale modify the internal structure of the �ame
thermal thickness and the eddies at the Kolmogorov scale might modify the internal structure of the
reaction thickness. Eddies with sizes greater than 11 times the Kolmogorov scale wrinkle the �ame
strongly, resulting in a considerable distortion of �ame structure. This is evident from signi�cant
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Case A Case B Case C
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FIG. 2. Selected regions of instantaneous nondimensional temperaturecT (row 1) (green contours show
cT = 0.1,0.5,0.7 isolines from left to right, shown close up in row 2), normalized �rst invariantP � =
P × (� th/SL ) (row 3), second invariantQ� = Q × (� th/SL )2 (row 4), and third invariantR� = R × (� th/SL )3

(row 5) �elds at thexŠy midplane for (from left to right) cases A–C.

thickening of the �ame and the large variations in the local �ame thickness depending on the local
turbulent �ow conditions.

Note that there are no signs of localized �ame extinction in case C in spite of large values of the
Karlovitz number (i.e., Ka> 100). This is consistent with several previous DNS �ndings [30–33].
The above discussion suggests that distinctly different physical mechanisms are likely to govern the
behavior of invariants in the three cases considered. It is also important to note from TableI that the
values of Da, Ka, and Ret change from one case to another here and Ka is not modi�ed in isolation.
Thus, the alternations of Da and Ret in addition to the modi�cation of Ka play a signi�cant role in
the differences in behavior of the invariants and their components among cases A–C.

Figure2 shows that the qualitative nature of the distributions ofQ� andR� in cases B and C
is signi�cantly different in comparison to case A: The distributions ofQ� andR� in cases B and
C exhibit much smaller length scales than in case A. Note that case B has much higher turbulent
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Reynolds number Ret than in case A and thus case B shows a larger range of length scales than in
case A. Cases A and B have the same values oflT , but case B shows smaller structures of turbulence
in Q� andR� distributions due to larger scale separation arising from a higher value of Ret . Case
C has a smaller valuelT and a greater value of Ret than in case A and thus case C exhibits much
smaller turbulence structures inQ� andR� distributions than in case A due to the combination of
higher Ret and smallerlT .

It is also seen from Fig.2 that large nonzero values ofP are concentrated within the �ame because
P is directly related to the dilatation rate (i.e.,P = Š � · �u) and the effects of thermal expansion
and dilatation rate are strong only within the �ame. Furthermore, focusing of heat gives rise to high
magnitudes of positive� · �u (i.e., negative values ofP with high magnitude) at the locations where
the �ame is concave towards the reactants. In contrast, defocusing of heat leads to small positive
and in some extreme cases negative values of� · �u (i.e., small negative and positive values ofP) at
the locations where the �ame is convex towards the reactants.1

Both the strain rate and vorticity along with the dilatation rate (i.e.,ŠP) contribute towards the
value ofQ sinceQS = 0.5(P2 Š Sij Sij ) andQW = Wij Wij / 2 according toQ = QS + QW [see
Eq. (1)]. The sign ofQ is indicative of vorticity-dominated regions outside the �ame (whereP � 0
for low Mach number �ows like the one considered here), for whichQ > 0, and strain-dominated
regions, for whichQ < 0. Figure2shows that both vorticity-dominated and strain-dominated regions
exist in all cases outside the �ame, but the degree of intermittency is much greater in cases B and C
than in case A. A comparison of the magnitudes ofP andQ from Fig.2 reveals that the magnitude
of P2 remains smaller than the magnitude ofQ in most cases in the �ow �eld and these quantities
become comparable only within the �ame. An increase inu�/SL leads to an increase in the magnitude
of Q: The maximum value ofQ in case C is greater than that in case B, which is greater than that
in case A.

Distinct modes of the �ame-turbulence interaction are evident by comparing cases B and C in
Fig. 2 by the evolution of theQ �elds across the �ame. The magnitude ofQ drops signi�cantly
across the �ame in case B (see the drop of the magnitude ofQ across thecT = 0.1 isosurface in
case B in Fig.2). In contrast, in case C the magnitude of theQ �eld remains signi�cant throughout
the �ame front even beyondcT = 0.7. Finally, the high values ofQ are found close to the highly
concave (to the reactants) regions in case A. This behavior arises due to focusing of heat in these
regions, leading to an increased volumetric dilation rate (� · �u) and subsequentlyQ due to high
values ofP2 (sinceP = Š � · �u) [see Eq. (1)].

The expression forR contained in Eq. (1) may be rewritten as the sum of the terms that play roles
in dissipation rate generation (ŠSij Sjk Ski / 3) and enstrophy production (P QW Š 	 i Sij 	 j / 4) in the
following manner:

R = 1
3(ŠP3 + 3P Q Š Sij Sjk Ski ) Š 1

4	 i Sij 	 j

= 1
3(ŠP3 + 3P Qs Š Sij Sjk Ski )
� �� �

Rs

+ P QW Š 1
4	 i Sij 	 j . (2)

Hence,R� may assume high positive or negative values where there is an imbalance of the terms
contributing to dissipation rate generation and production of enstrophy. It is evident from Fig.2 that,
in case A, this imbalance is most pronounced in the vicinity of the �ame front, whereas in both cases
B and C it is evident throughout the entire unburned gas region. In all three cases the magnitude of
R� is negligible in most of the burned gas region. Furthermore, in case A, the non-negligible values
of R� retain the same sign along most of the �ame front shown here, whereas, in cases B and C, both
positive and negative values ofR� coexist in the unburned gas region and within the �ame front.

1It is not clearly evident from the plane shown in Fig.2, but this occurs on other planes.
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P
×

� t
h

/S
L

cT

FIG. 3. Log-linear variation ofP × (� th/SL ) with cT for cases A (red), B (green), and C (blue).

Figures3–6 show the variations of the normalized mean values ofP, Q, and R and their
constituent terms conditional oncT . The dilatation rate� · �u = Š P remains predominantly positive
in turbulent premixed �ames, but it is possible to get some localized pockets of negative dilatation
rate (i.e.,P > 0) in the regions of the �ame that are convex to the reactants (see Fig.2). However,
the probability of �nding a negative dilatation rate remains smaller than obtaining positive� · �u and
thus the mean value ofP = Š � · �u remains negative for all cases considered here (see Fig.3). The
magnitude ofP = Š � · �u depends on the strength of chemical activity within the �ame. Cases A
and B exhibit similar variations ofP across the �ame, but the magnitudes are much less in case C.
The �ame thicknesses in cases A and B are smaller or comparable to the respective� such that the
reaction zone remains quasilaminar and largely unaffected by turbulent �uctuations. Thus, although
the turbulence intensityu�/SL of case B is almost an order of magnitude greater than that in case
A, the thermal expansion experienced in both cases is remarkably similar. In case C, however, the
turbulent eddies enter into the inner reaction layer of the �ame and disrupt the chemical processes,
leading to enhanced heat loss to the preheat zone and a reduction in the reaction rate. For this reason
the magnitude ofP = Š � · �u observed in case C is much lower than that observed in cases A and
B. The diminishing strength of dilatation rate� · �u = Š P with increasing Ka is consistent with the
modeling assumption by Peters [26].

Figure 4 shows the variation of mean values ofQ × (� th/SL )2 and its components
{QS,Q W} × (� th/SL )2, conditional oncT . Both � · �u = Š P and

�
Sij Sij in�uence the component

QS = (P2 Š Sij Sij )/ 2, whereas the componentQW = Wij Wij / 2 depends on enstrophy
 (i.e.,
Wij Wij / 2 = 	 i 	 i / 4 = 
/ 2, where	 i is the i th component of vorticity). Since the turbulence
intensity u�/SL in case A is low, the main nonzero contribution arises due toP as a result of
thermal expansion. For case A, the mean value ofQW is negligible and the mean variation ofQ is

Case A Case B Case C

te
rm

s

cT cT cT

FIG. 4. Log-linear variation ofQ × (� th/SL )2 (red), QS × (� th/SL )2 (green), andQW × (� th/SL )2 (blue)
with cT for cases A–C.
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Case A Case B Case C
te

rm
s

cT cT cT

FIG. 5. Log-linear variation ofR × (� th/SL )3 (red),RS × (� th/SL )3 (green),P QW × (� th/SL )3 (blue), and
(Š	 i Sij 	 j / 4) × (� th/SL )3 (magenta) withcT for cases A–C. All terms in case C are to be multiplied by 104 as
indicated.

dominated by the mean value ofQS, which assumes predominantly positive values except towards
the burned gas side of the �ame where the effects ofP2 are negligible due to the weak dilatation
rate� · �u = Š P. For case B, the mean value ofQW remains nonzero and positive across the �ame,
whereas the mean value ofQS remains negative for low and high values ofcT , indicating thatSij Sij
dominates overP2. This behavior originates from weak contributions of dilatation rate� · �u = Š P
on both unburned and burned gas sides of the �ame (see Fig.3) and thus the contribution of
QS = (P2 Š Sij Sij )/ 2 is principally governed bySij Sij in these regions. However,P2 assumes high
values due to large values of dilatation rate� · �u = Š P close to the reaction zone (see Fig.3) and
thusP2 dominates overSij Sij to give rise to positive mean value ofQS for intermediate values of
cT in case B. Thus, the mean value ofQ × (� th/SL )2 remains small at high and low values ofcT and
attains its maximum values atcT � 0.2, where the mean values ofQS andQW are both positive. In
contrast to cases A and B, the magnitude ofQ and its components atcT � 0.0 are far greater in case
C. The mean contribution ofQS = (P2 Š Sij Sij )/ 2 remains negative throughout the �ame in case
C because in this case the effects of the dilatation rate� · �u = Š P are too weak to supersede the
in�uences ofSij Sij and thus in this case the behavior ofQS is principally governed by (ŠSij Sij )/ 2.

The quantity QS can be expressed asQS = QS1 + QS2 = P2/ 3 Š E/ 4� , where E =
(� ij �u i /�x j )/� is the dissipation rate of instantaneous kinetic energy (i.e.,ui ui / 2) and� is the
kinematic viscosity. Hence,QS > 0 (QS < 0) corresponds to dilation- (dissipation-) dominated
regions. UsingQS1 = P2/ 3 � { � SL /� th}2 [17,34] and |QS2| = |Š E/ 4� | � 1/� 2

� (where� � is the
Kolmogorov time scale) leads toQS1/ |QS2| � � 2KaŠ2, where� = (Tad Š T0)/T 0 is the heat release
parameter. This suggests that the relative strength ofQS1 with respect toQS2 weakens (strengthens)
with increasing Ka (heat release). Thus, in case C (where Ka� 1), the mean behavior ofQS is
governed byQS2 = Š E/ 4� , whereas in case A (where Ka< 1) the mean behavior ofQS is governed
by the positive mean value ofQS1 = P2/ 3 for the major part of the �ame brush. In case B (where

Case A Case B Case C

te
rm

s

cT cT cT

FIG. 6. Log-linear variation of {Š P3/ 3} × (� th/SL )3 (red), {P QS} × (� th/SL )3 (green), and
{Š Sij Sjk Ski / 3} × (� th/SL )3 (blue) with cT for cases A–C. The inset in case C shows variation of terms of
smaller magnitude. All terms in case C are to be multiplied by 104 as indicated.
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Ka > 1), QS1 dominates overQS2 to result in a mean positive value ofQS only in the region of the
�ame where the effects of heat release are strong.

In summary, in case C the mean values ofQS andQW largely balance each other, although the
mean value ofQ remains negative across the entire �ame front, which is opposite to the behavior of
cases A and B.

The third invariantR may be written asR = RS + P QW Š 	 i Sij 	 j / 4, whereRS = (ŠP3 +
3P QS Š Sij Sjk Ski )/ 3 contains a contribution to the dissipation rate generation (i.e.,Sij Sjk Ski ), while
(P QW Š 	 i Sij 	 j / 4) contributes to the enstrophy production rate [6,16]. Thus,R > 0 indicates that
the enstrophy production rate dominates over the dissipation rate generation and vice versa [6,16].
The contributions ofP QW Š 	 i Sij 	 j / 4 andRS appear to balance across the �ame front in cases
A and B (see Fig.5). In both cases the mean value ofRS attains its maximum value, whereas the
mean value ofP QW attains its minimum value, atcT � 0.25. In case C, the mean value ofRS is
largely balanced by the mean contribution ofŠ	 i Sij 	 j / 4, which are both an order of magnitude
greater than the mean values ofP QW andR. The mean value ofR attains its maximum value at
cT � 0.0, but also a local maximum is obtained atcT � 0.20, andR remains positive across the
�ame, indicating that the enstrophy production rate dominates over the dissipation rate generation,
unlike cases A and B where the meanR � 0 across the �ame.

Finally, Fig.6 shows the individual terms contributing toRS: ŠP3/ 3, P QS, andŠSij Sjk Ski / 3.
For cases A and B, all terms are approximately zero atcT � 0.0 andcT � 1.0. The mean value of
ŠP3/ 3 remains positive and is balanced by the mean contributions ofP QS andŠ1/ 3Sij Sjk Ski ,
which are both negative in the region 0.15 < c T < 0.35 for cases A and B. In contrast, in case C,
the mean contributions ofŠP3/ 3, P QS, andŠSij Sjk Ski / 3 are positive, but they are dominated
by the mean value ofŠSij Sjk Ski / 3, which is related to the dissipation rate generation. One can
express (� · �u)E as (� · �u)E = 4� (P QS Š P3/ 3). It can be seen from the mean values ofP QS and
ŠP3/ 3 in Fig. 6 that the mean value ofP QS Š P3/ 3 = (� · �u)E/ 4� remains positive throughout
the �ame. As the mean value of� · �u remains positive and the correlation between� · �u andE is
not particularly strong, the positive mean value ofP QS Š P3/ 3 in Fig.6 indicates a positive mean
value ofE = 2� (Sij Sij Š P2/ 3).

Figure7 shows the joint probability density function (PDF) contours of the normalized second
and third invariantsF (Q� ,R� ) for cases A–C oncT = 0.1, 0.5, 0.7, whereQ� = Q × (� th/SL )2

andR� = R × (� th/SL )3. The behavior on isosurfaces of highercT values is not shown here, since
Q� � 0.0 for higher values ofcT (see Fig.4). The joint PDF exhibits a negative correlation between
Q� andR� [2,5] for all cT isosurfaces. AscT is increased, the most probable value of the distribution
moves towards the origin (i.e.,Q� = 0 andR� = 0).

It is useful to examine the variation of the individual local topologiesS1–S8 across the �ame and
to see how their variation changes from one case to another. Figures8(a)–8(c) show the variation
of the volume fraction (VF) of each topology as a function ofcT following the approach adopted
by Cifuenteset al. [15,16]. Figure8 reveals a noticeable difference in the distribution of the �ow
topology between cases A–C. For case A, both focal and nodal topologies show clear variation with
cT , with S1, S3, andS4 increasing andS2, S7, andS8 decreasing as moving from the unburned to
the burned gas region. Such trends diminish from case A to case C such that each topology is more
uniformly distributed acrosscT in case C. In particular, for case C, theS8 nodal topology disappears
entirely. TheS8 topology is associated with high positive values of dilatation rate (� · �u = Š P � 0)
and thus its probability decreases for case C due to weakening of dilatation rate.

Figure8(d) compares the distributions of volume fraction of total combined focal (i.e.,S1, S4,
S5, andS7) and nodal (i.e.,S2, S3, S6, andS8) topologies between cases A–C. For case A nodal
topologies are dominant in the unburned gas region and focal topologies in the burned gas region.
This contrasts with the previous simple chemistry analyses [15,16], which showed that the VF of
focal topologies decreases from the unburned gas to the burned gas side. The heat release parameter
� = (Tad Š T0)/T 0 for cases A–C is greater than that used in Refs. [15,16] (6 as opposed to 4)
and thus the �ame-induced turbulence is stronger in these cases than in the cases analyzed in
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FIG. 7. Joint PDFs ofQ� = Q × (� th/SL )2 and R� = R × (� th/SL )3, F (Q� ,R� ), on cT = 0.1,0.5,0.7
isosurfaces for cases A–C. The value ofF (Q� ,R� ) increases from blue to red color.

Refs. [15,16], where the VF of vortical (focal) topologies decayed across the �ame.2 The strength of
vortical structures within the �ame front increases within the �ame due to �ame-induced turbulence
in case A, which is re�ected in the increase in the VF of focal (i.e., vortical) topologies within the
�ame. In case C, the �ame does not signi�cantly in�uence the background turbulent �ow �eld and
the focal topologies remain dominant across the entire �amefront.

The statistics of �ame curvature plays a key role in order to understand the interrelation between
the distributions of the �ow and �ame topologies. The topology of acT isosurface can be described in
terms of its mean and Gauss curvatures
 m and
 g, respectively, following Dopazoet al. [7], where

 m = (
 1 + 
 2)/ 2 = 1/ 2� · (Š � cT / |� cT |) and 
 g = 
 1
 2, in which 
 1 and 
 2 are the principal
curvatures [7,16]. In the 
 mŠ
 g plane, the region
 g > 
 2

m indicates complex curvatures and thus
is nonphysical. Moreover, positive (i.e.,
 m > 0) curvature is associated with the wrinkles that
are convex to the reactants, whereas negative (i.e.,
 m < 0) curvature represents wrinkles that are

2The generation of enstrophy due to baroclinic torque is indeed found to be comparable to the magnitude of
viscous dissipation of enstrophy in case A, which leads to considerable enstrophy generation within the �ame
for this case. By contrast, the viscous dissipation of enstrophy dominates over baroclinic torque contribution in
cases B and C, where the vortex-stretching and viscous dissipation remain the leading-order contributors.
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FIG. 8. Variation of volume fractions of topologiesS1ŠS8 with cT for (a)–(c) cases A–C: focal topologies
S1 (red solid line),S4 (blue solid line),S5 (green solid line), andS7 (magenta solid line) and nodal topologies
S2 (red dashed line),S3 (blue dashed line),S6 (green dashed line), andS8 (magenta dashed line). (d) Variation
of VFs of total focal (solid lines) and nodal (dashed lines) topologies withcT for cases A (tan), B (black), and
C (olive).

concave to the reactants (see Fig.2). The realizable part of
 m > 0 (
 m < 0) and
 g > 0 represents
cup convex (cup concave) �ame topology. By contrast,
 m > 0 (
 m < 0) and
 g < 0 represents
saddle convex (saddle concave) �ame topology. The combination of
 m > 0 (
 m < 0) and
 g = 0
represents tile convex (concave) �ame topology. Figure9 shows a scatter plot of the mean versus
Gaussian curvature for cases A–C conditional on one representative focal (S7) and one nodal (S3)
topology. The plots in Fig.9 are colored to highlight the highest concentrations of data points. It
is apparent from Fig.9 that the distribution of topologiesS3 andS7 favors
 m,
 g > 0 (
 m < 0 and

 g > 0) for case A (for case C), whereas case B shows a more symmetric distribution. A similar

083401-11



WACKS, CHAKRABORTY, KLEIN, ARIAS, AND IM

Case A Case B Case C

S3

� g
×

�2 th

S7

� g
×

�2 th

� m × � th � m × � th � m × � th

FIG. 9. Scatter of normalized mean and Gaussian curvatures colored by count for (from left to right) cases
A–C. TopologiesS3 andS7 are shown exemplarily. Magnitude increases with color from white to red. Green
dots indicate the location of the maximum values.

trend is observed for topologiesS1, S2, andS8. TopologyS4 is more symmetric and for topologies
S5 andS6 there were insuf�cient data. These results do not reveal any consistent trend between �ow
and �ame topologies based on these results, and a more detailed analysis is needed in this respect.

Figure1 shows that the topologies are associated with different types of generic �ow structures.
Thus, the contributions of these topologies to turbulent processes such as micromixing characterized
by the scalar dissipation rate (SDR)Nc = D� cT · � cT (whereD is the thermal diffusivity) and
enstrophy
 = �	 · �	/ 2 transport in turbulent premixed �ames are of fundamental importance. The
transport equations ofNc and
 are given by [17,18,34,35]

�
DNc

Dt
=

�
�x j

�
�D

�N c

�x j

�
Š 2D

DcT

Dt
�c T

�x k

��
�x k

Š 2�D
�c T

�x i

�u i

�x j

�c T

�x j� �� �
�

+ 2D
� �	 T

�x k

�c T

�x k
Š 2�D 2 � 2cT

�x k�x i

� 2cT

�x k�x i
+ f (D), (3a)

D

Dt

= 	 i 	 k
�u i

�x k� �� �
V

Š� ijk 	 i
1
� 2

��
�x j

� � kl

�x l
+

� ijk 	 i

�
� 2� kl

�x j �x l
Š 2

�u k

�x k

 + � ijk

	 i

� 2

��
�x j

�p
�x k

, (3b)

where� , p, �	 T , and� ij are the density, pressure, chemical source term, and viscous stress tensor,
respectively, andf (D) accounts for the contribution due to diffusivity gradients. The termsŠ2�D�
and V are referred to as the scalar-turbulence interaction and vortex-stretching terms, respec-
tively [17,18,34,35]. The term� in Eq. (3a) can be written as� = (�c T /�x i )(�u i /�x j )(�c T /�x j ) =
(e� cos2� + e� cos2� + e� cos2� )� cT · � cT = an� cT · � cT , wherean = Ni Nj �u i /�x j is the nor-
mal strain rate withNi = Š (�c T /�x i )/ |� cT | being the i th component of the �ame normal
vector [17]. This suggests that� takes a positive (negative) value for positive (negative) values of
an [17]. The expression� = (e� cos2� + e� cos2� + e� cos2� )� cT · � cT = an� cT · � cT indicates
that the behaviors of� andan are governed by the alignment of� cT with local principal strain rates.
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FIG. 10. Variation of the mean values of� � = � × (� 3
th/SL ) (top row) andV � = V × (� th/SL )3(bottom

row) conditional oncT for cases A (left column), B (middle column), and C (right column): focal topologies
S1 (red solid line),S4 (blue solid line),S5 (green solid line), andS7 (magenta solid line) and nodal topologies
S2 (red dashed line),S3 (blue dashed line),S6 (green dashed line), andS8 (magenta dashed line). Results are
omitted where the volume fraction is less than 0.01. The values ofV � in case C are to be multiplied by 105 as
indicated.

As the �ow topologies are associated with particular combinations of strain rate and vorticity
distributions, they are likely to in�uence the statistical behaviors of terms� and V. These
dependences of� = (�c T /�x i )(�u i /�x j )(�c T /�x j ) = (e� cos2� + e� cos2� + e� cos2� )� cT · � cT
andV = 2(e� cos2� � + e� cos2� � + e� cos2� �)
 arise due to the alignment of� cT and �	 with the
most extensive (i.e., most positive), intermediate, and most compressive (i.e., most negative) strain
rates (i.e.,e� , e� , ande� ), where�,� , and� (� �,� �, and� �) are the angles between� cT ( �	 ) and the
eigenvectors associated withe� , e� , ande� , respectively.

The �rst row of Fig. 10 shows the contribution of different topologies to the mean values of�
conditional oncT .3 Cases A and B show positive mean contributions of� for all topologies except
for S5 andS6 in case A andS3, S5, andS6 in case B. The mean value of� peaks atcT � 0.25.
In case A,S2 andS7 remain major contributors of� , closely followed byS4 andS8, whereasS8
is the primary contributor in case B, followed, in order, byS7, S2, S4, S1, andS3. The absence of
contributions ofS1 and S3 in case A is due to the scarcity of the corresponding samples at low
values ofcT [see Fig.8(a)]. Although case C also displays peak mean values of� for low cT , the
behavior of the topologies is vastly different: Mean contributions forS1–S7 are mostly negative,
with the exception ofS8. The peak magnitude of the negative mean value of� is obtained forS2
at cT � 0.15. A non-negligible contribution is obtained fromS5, although the sample size remains
small [see Fig.8(c)].

A preferential alignment between� cT and e� (e� ), characterized by high probability of
cos2� � 1.0 (cos2� � 1.0), leads to a positive (negative)� [17,34,36–39]. It has been shown
elsewhere [17,34,36–39] that � cT preferentially aligns withe� when the strain rate induced by

3The components of� andV conditional on topology have not been shown because they deterministically
show similar behavior. For example, the mean values of (e� cos2 � )� cT · � cT and 2(e� cos2� �)
 conditional on
each topology will exhibit positive values due to positive value ofe� . By the same token, the mean values of
(e� cos2� )� cT · � cT and 2(e� cos2� �)
 conditional on topology will deterministically exhibit negative values
for all cases. The magnitudes of these conditional mean values are expected to be different from one case to
another because the strain rate magnitude will depend onu�/SL andlT /� th.
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�ame normal acceleration overcomes turbulence straining. In contrast,� cT aligns withe� under
the dominance of turbulent straining [17,34,36–39]. As the effects of heat release are stronger in the
corrugated �amelets and thin reaction zone regime �ames (e.g., cases A and B) than in the broken
reaction zone regime �ames (e.g., case C),� cT shows strong alignment withe� (e� ) in cases A and
B (case C), thus leading to a positive (negative) value of� . Although case C exhibits predominantly
negative� , theS8 topology is associated with local high positive� · �u = Š P (see Fig.1) and thus
� cT aligns locally withe� to result in a positive� in this region.

A careful comparison reveals that the mean values of� conditional oncT for S1–S4 topologies
exhibit positive values due to predominant alignment of� cT with e� under the action of strong heat
release in cases A and B. By contrast, predominant alignment of� cT with e� due to weak in�uences
of heat release in case C yields negative mean values of� conditional oncT for S1–S4 topologies.
As the �ow topologiesS5 andS6 are rare occurrences in premixed �ames, a consistent trend is not
expected for these topologies. The topologiesS7 andS8 are associated with positive� · �u = Š P
(see Fig.1) and thus the effects of heat release are strongly felt in these topologies and as a result
� cT aligns locally withe� to yield positive mean values of� conditional oncT for these topologies
in all three cases. However, the effects of heat release are weak towards the unburned gas side of
the �ame and thus the mean value of� conditional oncT exhibits negative values even for theS8
topology in case C.

The second row of Fig.10 shows the contribution of different topologies to the mean values of
V = 2(e� cos2� � + e� cos2� � + e� cos2� �)
 conditional oncT , which reveals that the mean value of
V conditional oncT for all topologies remain positive for all three cases. The predominant alignment
of �	 with the intermediate and most extensive principal strain rates (i.e.,e� ande� ) in these cases, in
accordance with previous �ndings [18,32,35], gives rise to a positive mean value ofV for all cases
considered here, but both the mean value and the qualitative behavior vary greatly between cases. In
case A,S7 andS8 remain dominant contributors toV between 0.25 < c T < 0.75, but no clear peak
in their mean contribution is evident. In case B, however, the contribution ofS1 is dominant and its
mean value shows a clear peak atcT � 0.25. Finally, in case C, all nonzero topologies exhibit peak
values atcT � 0.0, with S4 andS7 attaining the highest mean values ofV . Furthermore, in cases
B and C, with the exception ofS5 in case C, the contributions of all focal topologies of signi�cant
presence (i.e.,S1, S4, andS7) attain higher values across the entire �ame than for all signi�cant
nodal topologies (i.e.,S2, S3, andS8).

The effects of �ame-induced turbulence are the strongest for topologies that are associated with
high positive� · �u = Š P in case A (e.g.,S7 andS8). This trend weakens with increasing Ka. Thus,
the focal topologies associated with positiveQ [S1, S4, andS7 (see Fig.1)] contribute more toV
than the nodal topologiesS2, S3, andS8. The topologiesS4 andS7 are associated with the vortex
stretching (see Fig.1) and thus they exhibit a high positive mean contribution ofV in case C. In
the absence of signi�cant �ame-induced turbulence,
 decreases within the �ame in case C and the
peak mean value ofV is obtained at the unburned gas (i.e.,cT � 0.0) side of the �ame front.

IV. CONCLUSION

The �ow topology distributions in different regimes of premixed turbulent combustion were
investigated using DNS data of statistically planar turbulent H2-air �ames with � = 0.7. The �ow
topologies were characterized in terms of the �rst, second, and third invariants (i.e.,P = Š � · �u,
Q, andR) of the velocity gradient tensor�u i /�x j , where invariantsQ andR are closely linked with
vorticity and strain rates and also their generation rates. The mean value of� · �u = Š P decreases
considerably in the broken reaction zone regime due to the severe disruption in chemical processes.
The regime of combustion, especially the weakening of dilatation rate effects with increasing
Karlovitz number, signi�cantly affects the statistical behaviors of dilatation rate, enstrophy, and
strain rate magnitude in addition to the generation rates of enstrophy and dissipation rate. These
in�uences are re�ected in the statistical behaviors of the second and third invariants (i.e.,Q andR)
of the velocity gradient tensor and their behavior across the �ame.
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Detailed explanations were provided for the observed combustion regime dependences ofP,
Q, andR, the �ow topology distribution, and their in�uences on the scalar-turbulence interaction
and vortex-stretching terms in the SDR and enstrophy transport equations, respectively. It was
demonstrated that the in�uences of the combustion regime onP, Q, and R have important
consequences on the distribution of those �ow topologies that make dominant contributions to
the scalar-turbulence interaction and vortex-stretching terms in the SDR and enstrophy transport
equations, respectively. This analysis identi�ed the �ow topologies that make dominant contributions
to � and V and thus the �ow con�gurations responsible for the observed trends in different
combustion regimes. This information can help in designing simpli�ed experimental con�gurations
for analyzing the statistical behaviors of the scalar-turbulence interaction and vortex-stretching terms.
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