
<table>
<thead>
<tr>
<th>Item Type</th>
<th>Preprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Qian, Xuewen; Renzo, Marco Di; Liu, Jiang; Kammoun, Abla; Alouini, Mohamed-Slim</td>
</tr>
<tr>
<td>Eprint version</td>
<td>Pre-print</td>
</tr>
<tr>
<td>Publisher</td>
<td>arXiv</td>
</tr>
<tr>
<td>Rights</td>
<td>Archived with thanks to arXiv</td>
</tr>
<tr>
<td>Download date</td>
<td>2023-11-01 12:06:13</td>
</tr>
<tr>
<td>Link to Item</td>
<td>http://hdl.handle.net/10754/663591</td>
</tr>
</tbody>
</table>

X. Qian, M. Di Renzo, Fellow, IEEE, J. Liu, A. Kammoun, Member, IEEE, and M.-S. Alouini, Fellow, IEEE

Abstract—We consider a fading channel in which a multi-antenna transmitter communicates with a multi-antenna receiver through a reconfigurable intelligent surface (RIS) that is made of \(N \) reconfigurable passive scatterers impaired by phase noise. The beamforming vector at the transmitter, the combining vector at the receiver, and the phase shifts of the \(N \) scatterers are optimized in order to maximize the signal-to-noise-ratio (SNR) at the receiver. By assuming Rayleigh fading (or line-of-sight propagation) on the transmitter-RIS link and Rayleigh fading on the RIS-receiver link, we prove that the SNR is a random variable that is equivalent in distribution to the product of three (or two) independent random variables whose distributions are approximated by two (or one) gamma random variables and the sum of two scaled non-central chi-square random variables. The proposed analytical framework allows us to quantify the robustness of RIS-aided transmission to fading channels. For example, we prove that the amount of fading experienced on the transmitter-RIS-receiver channel linearly decreases with \(N \). This proves that RISs of large size can be effectively employed to make fading less severe and wireless channels more reliable.

Index Terms—Smart surfaces, fading, performance analysis.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications [1]. RISs can be realized in different ways, which include (i) implementations based on large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength [2]. In this letter, we consider RISs made of scatterers that are passive, are spaced half of the wavelength apart, and are individually configured and optimized for realizing passive beamforming through the environment [3], [4]. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute an emerging and promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWApD design) [5], [6].

Quantifying the performance of optimized RIS-empowered multi-antenna wireless systems is an open research issue. In particular, several researchers have developed algorithms for jointly optimizing the beamforming vector (\(q \)) at the transmitter, the matrix of phase shifts at the RIS (\(\Phi \)), and the combining vector (\(w \)) at the receiver [2], Sec. V-J. In general, however, the optimal triplet \((q, \Phi, w) \) cannot be formulated in closed-form and can only be computed numerically. An exception is constituted by wireless systems in which the transmitter and receiver are equipped with a single antenna. For this reason, currently available analytical frameworks and scaling laws are only applicable to single-antenna transmitters and receivers. Representative contributions include [7]–[12]. In [7] and [8], in particular, the authors show that the average SNR at the receiver scales with the square of the number of tunable elements \((N) \) of the RIS. In [9], the authors study the error probability over Rayleigh fading channels by using the central limit theorem. In [10] and [11], the authors quantify the impact of phase noise for transmission over Rayleigh and Rician fading channels, respectively. In [12], the authors analyze the impact of phase noise and hardware impairments for transmission over line-of-sight (LOS) channels.

Motivated by these considerations, we consider a fading channel in which a multi-antenna transmitter communicates with a multi-antenna receiver through an RIS whose \(N \) scattering elements are impaired by phase noise. We introduce an analytical approach for characterizing the distribution of the SNR and for determining its scaling laws as a function of \(N \). Over Rayleigh fading or LOS channels, we prove that the SNR can be formulated, for any phase noise distribution, as the product of gamma and scaled non-central chi-square random variables. With the aid of numerical simulations, in addition, we show that the SNR can be well approximated with a gamma random variable whose parameters are formulated in closed-form. The proposed approach unveils the scaling laws of the mean, the variance, and the amount of fading (AF) of the SNR as a function of \(N \). Our analysis confirms that RISs of large size can be effectively employed to make the transmission of information over fading channels more reliable.

II. SYSTEM MODEL

We consider a point-to-point wireless system in which a transmitter equipped with \(N_T \) antennas and a receiver equipped with \(N_R \) antennas communicate through an RIS. The RIS is made of \(N \) antenna elements that are spaced half-wavelength apart and that apply independent phase shifts to the incident signal. The phase shift applied by the \(n \)th element is denoted by \(\phi_n \) for \(n = 1,2,\ldots,N \). For ease of notation, the \(N \) phase shifts are collected in the \(N \times N \) diagonal matrix \(\Phi \). The \(n \)th phase shift is assumed to be subject to phase noise, e.g., due to the finite resolution of the phase shifts or to phase estimation errors. The phase noise is assumed to be independent among the \(N \) phase shifts. We define \(\phi_n = \phi_n^{(\text{opt})} + \delta_n \), where \(\phi_n^{(\text{opt})} \) is the optimal phase shift in the absence of phase noise and \(\delta_n \) is the phase noise. The distribution of \(\delta_n \) is arbitrary but its mean is assumed to be zero. Examples of phase noise distributions are given in Section IV. The \(N_T \times 1 \) unit-norm beamforming vector at the transmitter is denoted by \(q \) and the \(N_R \times 1 \) unit-norm
TABLE I: Main notation (\(RV = \) random variable)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d\sim)</td>
<td>Equivalent in distribution, distributed as</td>
</tr>
<tr>
<td>(N_{N \geq 1} \sim N_{\geq 1} \sim \infty)</td>
<td>Equality and scaling law if (N \geq 1)</td>
</tr>
<tr>
<td>(E, V, \text{cov})</td>
<td>Expectation, variance, covariance</td>
</tr>
<tr>
<td>(\text{Re}, \text{Im})</td>
<td>Real part, imaginary part</td>
</tr>
<tr>
<td>((\cdot)^H, (\cdot)^i)</td>
<td>Hermitian operator, indicator function</td>
</tr>
<tr>
<td>(</td>
<td>\cdot</td>
</tr>
<tr>
<td>(A \times B)</td>
<td>(A \times B) matrix with all zero entries</td>
</tr>
<tr>
<td>(I_{L \times B})</td>
<td>(A \times B) matrix with all one entries</td>
</tr>
<tr>
<td>(I_\alpha(\cdot), \Gamma(\cdot))</td>
<td>Bessel function of the first kind, Gamma function</td>
</tr>
<tr>
<td>(\text{sinc}(\cdot))</td>
<td>Normalized sampling function ((\sin(\pi x))/(\pi x))</td>
</tr>
<tr>
<td>(O(\cdot))</td>
<td>Big O (asymptotic) notation</td>
</tr>
<tr>
<td>(N(m, \sigma^2))</td>
<td>Gaussian RV ((E = m, \sigma = \sigma^2))</td>
</tr>
<tr>
<td>(CN(m, \sigma))</td>
<td>Complex Gaussian RV ((E = m, \sigma = \sigma^2))</td>
</tr>
<tr>
<td>(\mathbb{B}(a, b))</td>
<td>Beta RV ((E = a/(a+b), \sigma = \sigma(1-E)/(a+b+1)))</td>
</tr>
<tr>
<td>(U(a, b))</td>
<td>Uniform RV in ([a, b])</td>
</tr>
<tr>
<td>(G(k, \theta))</td>
<td>Gamma RV ((E = k\theta, \sigma = k\theta^2))</td>
</tr>
<tr>
<td>(\Lambda^2_G(\lambda))</td>
<td>Non-central chi-square RV ((E = k + \lambda, \sigma = 2(k+2\lambda)))</td>
</tr>
<tr>
<td>(\mathcal{V}(\mu, \kappa))</td>
<td>Von Mises RV ((E = \mu, \sigma = 1 - I_1(\kappa)/I_0(\kappa)))</td>
</tr>
</tbody>
</table>

The semi-analytical expressions of the SNR in (1) and (2) are the departing point for calculating the distribution and the scaling laws of the SNR as a function of \(N\) (see Section IV). First, we summarize some lemmas to enable such analysis.

Lemma 1: Let \(\lambda^+_H\) and \(\lambda^-_G\) be the largest eigenvalues of \(W_H\) and \(W_G\), respectively. \(\lambda^+_H\) and \(\lambda^-_G\) are well approximated by Gamma random variables whose mean and variance are:

\[
E\{\lambda^+_H\} = \alpha_1(M, N) - \alpha_0\beta_1(M, N)
\]

\[
\mathbb{V}\{\lambda^+_H\} = \beta_0\beta_1(M, N)
\]

where \(X = \{G, H\}\), \(M = N_T\) if \(X = H\) and \(M = N_R\) if \(X = G\), \(\alpha_0 = 1.7711\), \(\beta_0 = 0.8132\), and:

\[
\alpha_1(M, N) = \left(1 + \sqrt{M/N}\right)^2
\]

\[
\beta_1(M, N) = N^{-2/3} \left(1 + \sqrt{M/N}\right) \left(1 + \sqrt{N/M}\right)^{1/3}
\]

Proof: It follows from [17] and [18] by applying results on random matrix theory and by calculating numerically the mean and the variance of the Tracy-Widom distribution.

Remark 1: \(\lambda^+_H\) and \(\lambda^-_G\) may be approximated by a shifted Gamma random variable [18]. We consider a Gamma random variable due to its simplicity yet satisfactory accuracy.

Lemma 2: Let \(v_{1G}\) and \(u_{1H}\) be the eigenvectors in (1) and (2). For any \(N\), they are i.i.d. and uniformly distributed vectors on the \(N - 1\) sphere, i.e., on the surface of the unit \(N\)-ball. Thus, their distribution is equivalent to (for any \(l, k\)):

\[
v_{lG} = v/||v|| \quad u_{lH} = u/||u||
\]

where \(v(n) \sim \mathcal{C}(0,1)\) and \((u(n) \sim \mathcal{C}(0,1))\) are mutually i.i.d. random variables for \(n = 1, 2, \ldots, N\).

Proof: See [19].

Remark 2: From Lemma 2 we evince that, for every finite \(N\), the eigenvectors of a Wishart matrix with zero mean complex Gaussian entries (i.e., \(W_H\) and \(W_G\)) do not
point towards any privileged direction. If the entries are not Gaussian, this result does not hold in general [19].

Lemma 3: For any l, the eigenvalues $\lambda_{l,X}$ and the eigenvectors $v_{l,X}$ or $u_{l,X}$ for $X = \{G, H\}$ are independent.

Proof: See [19]. ■

Lemma 4: Let y be an $N \times 1$ vector whose entries are i.i.d. standard complex Gaussian random variables, i.e., $y(n) \sim CN(0, 1)$ for $n = 1, 2, \ldots, N$. Define the normalized vector $\tilde{y}(n) = |y(n)|/\|y\|$. Then, $\tilde{y}^2(n) \sim B(1, N - 1)$ and:

$$
\begin{align*}
E\{\tilde{y}^2(n)\} &= 1/N \\
E\{\tilde{y}(n)\} &= (\sqrt{\pi}/2) (\Gamma(N)/\Gamma(N + 1/2))
\end{align*}
$$

(6)

Proof: Since $y(n) \sim CN(0, 1)$ for $n = 1, 2, \ldots, N$, then $\tilde{y}^2(n) = |y_1 + y_2|^2$ where $y_1 = \tilde{y}^2(n) \sim G(1, 1)$ and $y_2 = \sum_{m \neq n} \tilde{y}^2(m) \sim G(N - 1, N)$ are independent random variables. Thus, $\tilde{y}_1/(\tilde{y}_1 + y_2) \sim B(1, N - 1)$, and (6) follows from the moments of a Beta random variable. ■

Lemma 5: Let y be an $N \times 1$ vector of i.i.d. standard complex Gaussian random variables, i.e., $y(n) \sim CN(0, 1)$ for $n = 1, 2, \ldots, N$. Define $\tilde{y}(n) = |y(n)|/\|y\|$. For $m \neq n$, we have $E\{\tilde{y}(n) \tilde{y}(m)\} = \pi/(4N)$.

Proof: Define the variable $z = \sum_{k=1}^N |y(k)|^2$. By using the notation $E[\tilde{y}(n) \tilde{y}(m)] = E\{y(n) \overline{y(m)}(1/z)\}$

(7)

$$
\begin{align*}
E\{\tilde{y}(n) \tilde{y}(m)\} &= E\{y(n) \overline{y(m)}(1/z)\} \\
&= \int_0^{+\infty} E\{\mathcal{J}_n(t)\} E\{\mathcal{J}_m(t)\} \prod_{k=1, k \neq n, m}^N E\{\mathcal{J}_k(t)\} dt
\end{align*}
$$

where (a) follows because the entries of y are independent and we defined $\mathcal{J}_n(t) = |y(n)| \exp(-|y(n)|^2 t)$, $\mathcal{J}_m(t) = |y(m)| \exp(-|y(m)|^2 t)$. $\mathcal{J}_k(t) = \exp(-|y|^2 t)$. The proof follows by computing each expectation since the distribution of $|y(n)|^2$ is known, i.e., $|y(n)|^2 \sim G(1, 1)$, and by using the notation $E[\tilde{y}(n) \tilde{y}(m)] = E\{y(n) \overline{y(m)}(1/z)\}$.

Lemma 6: Consider Υ_l, Ψ_l in (1) and (2) for $l, k = 1, 2, \ldots, N$. Then, for $n = 1, 2, \ldots, N$, we define the moments $m(1)_{\Upsilon} = E\{\Re\{\Upsilon_l\}\}$, $m(1)_{\Psi} = E\{\Im\{\Psi_l\}\}$, $m(2)_{\Upsilon} = E\{\Re\{\Upsilon_l\}\}$, and $m(2)_{\Psi} = E\{\Im\{\Psi_l\}\}$.

Then, we have:

$$
\begin{align*}
m(1)_{\Upsilon} &= N(\pi/4) \Gamma(N) \Gamma(N + 1/2) c_1 \\
m(1)_{\Psi} &= N(\pi/4) \Gamma(N) \Gamma(N + 1/2) s_1 \\
m(2)_{\Upsilon} &= (1/N) c_2 + (\pi/16) (N - 1) c_1 \\
m(2)_{\Psi} &= (1/N) s_2 + (\pi/16) (N - 1) s_1 \\
m(1)_{\Upsilon} &= N(\sqrt{\pi}/4) \Gamma(N) \Gamma(N + 1/2) c_1 \\
m(1)_{\Psi} &= N(\sqrt{\pi}/4) \Gamma(N) \Gamma(N + 1/2) s_1 \\
m(2)_{\Upsilon} &= c_2 + (\pi/4) (N - 1) c_1 \\
m(2)_{\Psi} &= s_2 + (\pi/4) (N - 1) s_1
\end{align*}
$$

(8)

where $c_1 = E\{\cos(\delta_n)\}, s_1 = E\{\sin(\delta_n)\}, c_2 = E\{\cos^2(\delta_n)\}, s_2 = E\{\sin^2(\delta_n)\}$ are given in Table I.

Proof: It follows by re-writing (1) and (2) by using (5), and by computing the moments using Lemmas 4 and 5. ■

Lemma 7: Consider $\Upsilon_{l,k}$ and Ψ_{l} in (1) and (2) for $l, k = 1, 2, \ldots, N$. The two random variables $\Re\{\Upsilon_{l,k}\}$ and $\Im\{\Upsilon_{l,k}\}$ and the two random variables $\Re\{\Psi_l\}$ and $\Im\{\Psi_l\}$ are uncorrelated for any $l, k = 1, 2, \ldots, N$ if the distribution of δ_n, for every $n = 1, 2, \ldots, N$, is symmetric around zero.

Proof: By definition of covariance, we have:

$$
\begin{align*}
\text{cov}\{\Re\{\Upsilon_{l,k}\}, \Im\{\Upsilon_{l,k}\}\} &= (1/N) E\{\sin(\delta_n)\}/2 \\
&= (\pi/16) (N - 1) c_1 s_1 - m(1)_{\Upsilon \Upsilon} m(1)_{\Upsilon \Psi}/2
\end{align*}
$$

(10)

$$
\begin{align*}
\text{cov}\{\Re\{\Psi_l\}, \Im\{\Psi_l\}\} &= E\{\sin(2\delta_n)/2 \\
&= (\pi/4) (N - 1) c_1 s_1 - m(1)_{\Upsilon \Upsilon} m(1)_{\Upsilon \Psi}/2
\end{align*}
$$

(11)

The proof follows by noting $E\{\sin(2\delta_n)\} = 0$ and $s_1 = 0$ if the distribution of δ_n is symmetric around zero.

Remark 3: Based on Table I, the distribution of δ_n is usually symmetric around zero, and the real and imaginary parts of $\Upsilon_{l,k}$ and Ψ_l can be assumed to be uncorrelated.

Remark 4: As N grows large, we obtain $\text{cov}\{\Re\{\Upsilon_{l,k}\}, \Im\{\Upsilon_{l,k}\}\} = O(1/N), \text{since, for } N \gg 1, \Gamma(N/2) = N^{-1/2}(1 + (\delta N)^{-1} + O(N^{-2}))$. This implies that the real and imaginary parts of $\Upsilon_{l,k}$ are asymptotically i.e., for large values of N uncorrelated even if the distribution of δ_n is not symmetric around zero.

Lemma 8: Consider $\Upsilon_{l,k}$ and Ψ_l in (1) and (2) for $l, k = 1, 2, \ldots, N$. Define:

$$
\begin{align*}
|\Upsilon_{l,k}|^2 &= (\Re\{\Upsilon_{l,k}\})^2 + (\Im\{\Upsilon_{l,k}\})^2 \\
|\Psi_l|^2 &= (\Re\{\Psi_l\})^2 + (\Im\{\Psi_l\})^2
\end{align*}
$$

(12)

Proof: It follows from the central limit theorem if $N \gg 1$: $\Re\{\Upsilon_{l,k}\} \sim N\left(\overline{\Upsilon}, \sigma_{\Upsilon}^2\right)$, $\Im\{\Upsilon_{l,k}\} \sim N\left(\overline{\Upsilon}, \sigma_{\Upsilon}^2\right)$, $\Re\{\Psi_l\} \sim N\left(\overline{\Psi}, \sigma_{\Psi}^2\right)$, and $\Im\{\Psi_l\} \sim N\left(\overline{\Psi}, \sigma_{\Psi}^2\right)$.

Remark 5: If the distribution of δ_n is symmetric around zero, the non-central chi-square random variables in (12) and (13) are independent. This originates from Remark 3, and because the real and imaginary parts of $\Upsilon_{l,k}$ and Ψ_l converge, asymptotically (i.e., $N \gg 1$), to Gaussian random variables.

Remark 6: Readers are referred to [20] for the sum of independent scaled non-central chi-square random variables.

IV. ANALYSIS OF THE SIGNAL-TO-NOISE-RATIO

In this section, we analyze the distribution, the mean, the variance, and the AF of the SNR, as well as the corresponding scaling laws as a function of N. The AF of the SNR is,

<table>
<thead>
<tr>
<th>Distribution</th>
<th>c_1</th>
<th>c_2</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_n = 0$</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\delta_n \sim U(-\pi, \pi)$</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>$\delta_n \sim U(-\pi, \pi)$</td>
<td>$(\cos(\delta_n))/2$</td>
<td>$(\cos(\delta_n))/2$</td>
<td></td>
</tr>
<tr>
<td>$\delta_n \sim VM(0, \kappa)$</td>
<td>$\Gamma(\delta_n)/\Gamma(\kappa-1)$</td>
<td>$\Gamma(\delta_n)/\Gamma(\kappa-1)$</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II: Examples of phase noise distributions ($s_1 = 0$)
TABLE III: SNR scaling laws as a function of N ($s_1 = 0$).
\[\bar{\xi}_{v1} = -6 + \beta_0 \left(N_T^{1/3} + N_R^{-1/3} \right) \text{ and } \bar{\xi}_{v2} = -5 + \beta_0 N_R^{-1/3}. \]

<table>
<thead>
<tr>
<th>SNR \text{RR}</th>
<th>SNR \text{LR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{v0} = 1$</td>
<td>$a_{v0} = \bar{N}_T$</td>
</tr>
<tr>
<td>$a_{v1} = (\pi/16) c_1^2$</td>
<td>$a_{v1} = (\pi/4) N_T c_1^2$</td>
</tr>
<tr>
<td>$a_{v0} = 2(c_2^2 + s_2^2)$</td>
<td>$a_{v0} = 2N_V^2 (c_2^2 + s_2^2)$</td>
</tr>
<tr>
<td>$a_{v1} = (\pi/4) c_1^2 c_2$</td>
<td>$a_{v1} = \pi N_V^2 c_1^2 c_2$</td>
</tr>
<tr>
<td>$+ (\pi^2/256) c_1^2$</td>
<td>$+ (\pi^2/16) N_V^2 c_1^2$</td>
</tr>
</tbody>
</table>

in particular, a unified statistical measure that quantifies the severity of fading and, correspondingly, the robustness of transmission technologies against channel fading. Some results are applicable to arbitrary values of N, while others apply only for large values of N. This is elaborated in further text.

A. Equivalent in Distribution Representation

For an arbitrary N, the following theorem yields an equivalent in distribution representation of the SNRs in (1) and (2).

Theorem 1: Consider the SNRs in (1) and (2). The following equivalent in distribution representations hold true:

\[\text{SNR}_{RR} = \gamma_0 N^2 \lambda_G \lambda_H^+ \sum_{n=1}^{N} \bar{v}(n) \bar{u}(n) \exp(\delta_n) \right)^2 \]
\[\text{SNR}_{LR} = \gamma_0 N_T N^2 \lambda_G^+ \sum_{n=1}^{N} \bar{v}(n) \exp(\delta_n) \right)^2 \]

where $\bar{v}(n) = |v(n)|/|v|$, $\bar{u}(n) = |u(n)|/|u|$, and $v(n) \sim CN(0,1)$, $u(n) \sim CN(0,1)$ are i.i.d. for $n = 1, 2, \ldots, N$.

Proof: From Lemma 2 and Remark 2, the eigenvectors of a Wishart matrix with zero mean complex Gaussian entries are equal in distribution, and, thus, the maximization in (1) and (2) is determined only by the distribution of the (largest) eigenvalues. From Lemma 3, the eigenvectors and the eigenvalues of a Wishart matrix with zero mean complex Gaussian entries are independent. This concludes the proof.

Theorem 1 provides us with a general tool for the analysis of RIS-aided wireless systems. Let us consider, e.g., SNR_{RR}. The same comments apply to SNR_{LR}. Equation (14) holds true for any N and it brings to our attention that the SNR is equivalent in distribution to the product of three independent random variables. There exist different approaches for computing the distribution of the product of independent random variables, e.g., [21]. For example, the distribution of the square absolute value of the sum in (14) may be obtained by first computing the Laplace transform of the sum of independent random variables, which is equal to the product of Laplace transforms of the individual random variables. In this letter, we do not pursue this line of research, since the resulting analytical expressions are likely not to be sufficiently tractable to gain insights for system design. In the next two sub-sections, on the one hand, we focus our attention on the case study in which $N \gg 1$, which is relevant for RIS-aided wireless systems.

B. Channel Model: Rayleigh Fading – Rayleigh Fading

In this section, we analyze the statistics of SNR_{RR} in (14) under the assumption that N is large, i.e., $N \gg 1$.

Theorem 2: Let us assume the same notation and definitions as in Section III. If $N \gg 1$, the following holds true:

\[\text{SNR}_{RR} \overset{N \gg 1}{=} \gamma_0 N_T P_G P_H \left(\bar{T}_{R} + \bar{C}_R + \bar{C}_T \right) \]

where $P_X \sim \mathcal{G} \left(\left(\{ \lambda_X^+ \} \right)^2 / \mathcal{V} \{ \lambda_X^+ \}, \mathcal{V} \{ \lambda_X^+ \} / \mathcal{E} \{ \lambda_X^+ \} \right)$ for $X = \{ G, H \}$ and $\mathcal{C}_S \sim \lambda_S^+ \left(\bar{C}_S \right)$ for $S = \{ R, I \}$ are four mutually independent random variables.

Proof: It follows from (14) by using Lemmas 1 and 2.

Proposition 1: Let us assume $N \gg 1$. The mean and the variance of SNR_{RR} in (14) can be formulated as follows:

\[\mathbb{E} \{ \text{SNR}_{RR} \} \overset{N \gg 1}{=} \gamma_0 N_T \mathcal{M}_G \mathcal{M}_H \bar{C}_R \]
\[\mathbb{V} \{ \text{SNR}_{RR} \} \overset{N \gg 1}{=} \gamma_0 N^4 \left(\bar{T}_G \bar{T}_H - \mathcal{M}_G^2 \mathcal{M}_H^2 \bar{C}_R \bar{C}_T \right) \]

where $\mathcal{M}_X = \mathbb{E} \{ \lambda_X^+ \}$ and $\bar{T}_X = \mathcal{V} \{ \lambda_X^+ \} + \mathbb{E} \{ \lambda_X^+ \}^2$ for $X = \{ G, H \}$, and $\bar{C}_S = \lambda_S^+ \left(\bar{C}_S \right)$ for $S = \{ R, I \}$ are three mutually independent random variables.

Proof: It is similar to the proof of Proposition 2.

Proposition 2: Let us assume $N \gg 1$. The mean and the variance of SNR_{LR} in (15) can be formulated as follows:

\[\mathbb{E} \{ \text{SNR}_{LR} \} \overset{N \gg 1}{=} \gamma_0 N_T N P_G \left(\bar{T}_R + \bar{C}_R + \bar{C}_T \right) \]
\[\mathbb{V} \{ \text{SNR}_{LR} \} \overset{N \gg 1}{=} 1 + \gamma_0 N^2 \mathcal{M}_G^2 \mathcal{M}_H^2 \left(\bar{T}_G \bar{T}_H - \mathcal{M}_G^2 \mathcal{M}_H^2 \bar{C}_R \bar{C}_T \right) \]

where $P_X \sim \mathcal{G} \left(\left(\{ \lambda_X^+ \} \right)^2 / \mathcal{V} \{ \lambda_X^+ \}, \mathcal{V} \{ \lambda_X^+ \} / \mathcal{E} \{ \lambda_X^+ \} \right)$ and $\bar{C}_S \sim \lambda_S^+ \left(\bar{C}_S \right)$ for $S = \{ R, I \}$ are four mutually independent random variables.

Proof: It is similar to the proof of Proposition 1.

D. Scaling Laws and Insights

From Propositions 1 and 2 explicit analytical expressions for the mean and the variance of the SNR can be obtained. The resulting formulas are, however, not tractable enough to gain insights for system design. Therefore, we analyze the dominant terms (scaling laws) in the asymptotic regime $N \gg 1$.

Proposition 3: Define $D = \{ RR, LR \}$, and assume $s_1 = 0$ and $N \gg 1$. Let $\text{AF}_{\text{SNR}_D} = \mathbb{V} \{ \text{SNR}_D \} / \mathbb{E} \{ \text{SNR}_D \}^2$ be the AF of SNR. As a function of N, while keeping the other system parameters fixed, the following scaling laws hold true:

\[\mathbb{E} \{ \text{SNR}_D \} \overset{N \gg 1}{=} \gamma_0 a_{v0} N^1 1 \left(c_1 = 0 \right) + \gamma_0 a_{v1} N^2 1 \left(c_1 \neq 0 \right) \]
\[\mathbb{V} \{ \text{SNR}_D \} \overset{N \gg 1}{=} \gamma_0 a_{v0} N^2 1 \left(c_1 = 0 \right) + \gamma_0 a_{v3} N^3 1 \left(c_1 \neq 0 \right) \]
\[\text{AF}_{\text{SNR}_D} \overset{N \gg 1}{=} \gamma_0 a_{v0} N^0 1 \left(c_1 = 0 \right) + \gamma_0 a_{v1} N^{-1} 1 \left(c_1 \neq 0 \right) \]

where a_{v0}, a_{v1}, a_{v3}, and a_{v1} are defined in Table III.

...
the cumulative distribution function (CDF) of the SNR obtained from Monte Carlo simulations [14] Proposition 1], and compares it against the distributions in [16], and a Gamma-based approximation for the SNR, i.e., $P_{\text{SNR}} \sim G \left(\left(\mathbb{E} \{\text{SNR}_{\text{RR}}\} \right)^2 / \mathbb{V} \{\text{SNR}_{\text{RR}}\}, \mathbb{V} \{\text{SNR}_{\text{RR}}\} / \mathbb{E} \{\text{SNR}_{\text{RR}}\} \right)$.

The proposed analytical approach is in good agreement with the simulations and confirm our findings.

VI. CONCLUSION

We have introduced an analytical framework to quantify the performance of RIS-aided multi-antenna transmission. If $N \gg 1$, we have proved that the AF of the SNR linearly decreases with N. Also, we have shown that the distribution of the SNR can be well approximated with a Gamma random variable. The proposed approach can be generalized to multiple scenarios, e.g., the analysis of multi-user and multi-RIS transmission.

REFERENCES