Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to β-Ga$_2$O$_3$ thin film

<table>
<thead>
<tr>
<th>Item Type</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Liu, Zeng; Zhi, Yusong; Li, Shan; Liu, Yuanyuan; Tang, Xiao; Yan, Zuyong; Li, Peigang; Li, Xiaohang; Guo, Daoyou; Wu, Zhenping; Tang, Weihua</td>
</tr>
<tr>
<td>Eprint version</td>
<td>Publisher’s Version/PDF</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1088/1361-6463/ab596f</td>
</tr>
<tr>
<td>Publisher</td>
<td>IOP Publishing</td>
</tr>
<tr>
<td>Rights</td>
<td>This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Physics D: Applied Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://doi.org/10.1088/1361-6463/ab596f</td>
</tr>
<tr>
<td>Download date</td>
<td>2024-03-24 10:19:58</td>
</tr>
<tr>
<td>Item License</td>
<td>CC BY-NC-ND 3.0 licence</td>
</tr>
<tr>
<td>Link to Item</td>
<td>http://hdl.handle.net/10754/660429</td>
</tr>
</tbody>
</table>
Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to $-\text{Ga}_2\text{O}_3$ thin film

To cite this article before publication: Zeng Liu et al 2019 J. Phys. D: Appl. Phys. in press https://doi.org/10.1088/1361-6463/ab596f

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2019 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to β-Ga₂O₃ thin film

Zeng Liu¹, Yusong Zhi¹, Shan Li¹, Yuanyuan Liu²,², Xiao Tang³, Zuyong Yan¹, Peigang Li¹, Xiaohang Li³, Daoyou Guo⁴, Zhenping Wu¹ and Weihua Tang¹

¹Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People’s Republic of China
²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
³Advanced Semiconductor Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
⁴Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
⁵The Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People’s Republic of China

E-mail: zengliu@bupt.edu.cn, pgli@bupt.edu.cn and whtang@bupt.edu.cn

Abstract
Schottky and Ohmic contacts are key matters affecting carrier transport in oxide semiconductor based electrical and optical devices. For Ga₂O₃, the comparison of optoelectrical behaviors and the fundamental physical mechanism between these two contacts are not well known yet. In this work, β-Ga₂O₃ thin films were grown via metal-organic chemical vapor deposition then deposited with symmetrical Ni/Au (Schottky) or Ti/Au (Ohmic) contacts. Optoelectrical measurements show that the Ohmic contacted device exhibits superior responsivities thanks to their higher photocurrents. While for the Schottky contacted device, firstly, it has faster response speed, secondly it exhibits larger photo-to-dark current ratios owing to their low dark current. Specifically, the voltage- and light intensity-dependent responsivity and detectivities of the Schottky and Ohmic contacted devices were measured and discussed under the consideration of different voltages and UV light intensities.

Keywords: β-Ga₂O₃, Schottky and Ohmic contacts, optoelectrical characteristics, metal-organic chemical vapor deposition (MOCVD)

1. Introduction

Due to the promising applications in information communications, chemical/biological analysis, flame detection, and environmental protection, ultraviolet (UV) photodetectors have drawn extensive research interests in the past years. Among them, the UV solar-blind detectors operating...
in a wavelength range from 200 nm to 280 nm are the solid choice for ozone sensing with low false alarming rate [1-3]. The performances of photodetectors, to a large degree, depend on the nature and modified properties of the selected materials [4]. Specifically, as one of the typical wide bandgap semiconductors, β-Ga$_2$O$_3$ not only has a ultra-wide bandgap of 4.5-4.9 eV (responding in the UV solid-blind regime), but also high thermal and chemical stability, high critical breakdown field of 6-8 MV/cm (allowing high voltage and strong radiation operations) [5, 6], therefore allowing them extensively employed to fabricate UV solar-blind photodetectors [7] in the forms of thin films [8-12], bulk single crystals [13-16] nanostructures [17-20] and heterogeneous structures [20-26].

Metal-Semiconductor-Metal (MSM) structure is a typically and widely used electrode pattern in photodetectors [27], in which either Ohmic or Schottky metal-semiconductor (M-S) contacts are employed in line with the requirements of the applications. The Ohmic contacted detectors (regarding as radiation-sensitive resistors), referenced as photoconductive, are presented by the change of resistance of the materials due to the external light stimulation, showing the intrinsic feature of materials [1, 8, 28, 29]. While the Schottky contacted detectors could show some modified performances owing to the efficient control of carrier transport via tuning the M-S interface barrier and the thickness of the depletion layer at the M-S interface [29-31]. For instance, Guo et al grew β-Ga$_2$O$_3$ thin film by laser molecular beam epitaxy and displayed a good Ohmic electrical behavior with dark current of 45 nA and rise time of 1.91 s, while the Schottky M-S behavior was illustrated after annealing, and the dark current and rise time were changed to be 0.3 nA and 0.62 s, respectively [8]. Other than the semiconductor and/or device processing, the contacting types depend on the choice of contacted metals [32], i.e., the difference between the work function of metal and the electron affinity of Ga$_2$O$_3$. An et al achieved good Ohmic contact in their photodetector, this device shown decent photoresponsivity and wavelength selectivity, while a long response time of 19 s [33]. As opposed to this, Chen et al demonstrated a fast responding Au/β-Ga$_2$O$_3$ nanowires array photodetector with faster decay time of 64 μs [34]. Such a UV detector may be contributed to the development of a depletion layer at the Au/β-Ga$_2$O$_3$ interface, which could restrain the separation of electron-hole pairs and conduce to the practicability more easily. In all, the M-S contact is a vital matter to determine the carrier transport and then affect the detector performances [35-39], due to
the differences between work function of metals and electron affinity of Ga$_2$O$_3$. However, to the
best of our current knowledge, a systematic comparison of Schottky and Ohmic contacts to Ga$_2$O$_3$
and the influences on photodetector performances are less reported.

In this work, β-Ga$_2$O$_3$ thin films were grown via metal-organic chemical vapor deposition
(MOCVD) then deposited with Ni/Au (Schottky) or Ti/Au (Ohmic) contacts. The optoelectrical
behaviors, photogenerated currents, time-dependent photoresponse, photoreponses, detectivities, response time were systematically measured on the as-prepared devices. These
aforementioned performances of the Ni/Au (Schottky) and Ti/Au (Ohmic) contacted devices were
systematically compared and discussed. In addition, the inherent physical mechanism of this
practical phenomenon was elucidated for its further optoelectronic applications.

2. Experimental

The deposition of β-Ga$_2$O$_3$ thin film on c-plane sapphire substrate was performed via a customized
MOCVD thin film growth system with a close-coupled showerhead reactor. Triethylgallium (TEGa)
and high-purity (5N) oxygen gas were used as gallium and oxygen sources, respectively. TEGa was
stored in a stainless steel bubbler, which was kept at temperature of 35 °C and pressure of 760 Torr.
Oxygen gas was delivered into the growth chamber, and a gas ratio of 6000 SCCM was set. On the
basis of the set oxygen flow, the [O/Ga] molar ratio was regulated to be ~1657. Specifically,
according to the Antoine’s equation

$$\log (P_{MO}) = a - b/T$$

where P_{MO} is the vapor pressure of TMGa, a and b are the Antoine constants, and T is the thermodynamic temperature of

$$n_{m0} = \frac{F \times P_{MO}}{V_m \times (P_{hub} - P_{MO})},$$

where n_{m0} is the molar flow rate of TMGa, F is the flow rate of carrier

gas, $V_m = 22414$ cm3/mol (ideal gas molar volume), P_{hub} is the pressure inside the bubbler. $n_{O2} =
\frac{F_O}{V_m}$, where n_{O2} is the molar flow rate of O$_2$, F_O is the flow rate of O$_2$. Therefore, the [O/Ga] molar
ratios in the experiment could be expressed as: $\frac{[O/Ga]}{n_{m0}} = \frac{n_{O2}}{n_{m0}} = \frac{5.35 \times 10^{-1}}{3.23 \times 10^{-1}} \sim 1657$. The growth
process was maintained for 15 min under a fixed growth chamber condition with temperature of
735 °C and pressure of 25 Torr.

The symmetrical Ni/Au and/or Ti/Au metal electrodes were patterned on the surface of β-
Ga$_2$O$_3$ thin film by means of electron beam evaporation, conventional photolithography and lift-off
techniques. The same photomask was employed to pattern the Ni/Au (120 nm/180 nm) and Ti/Au

(120 nm/180 nm) metal electrodes. The quadrate electrodes are 400 μm wide and 400 μm long, and 200 μm spacing gap. Calculated from the scale of electrode patterns, the efficient irradiant area could be about $8 \times 10^4 \text{ μm}^2$ for both two electrode types. In details, after patterning the Ti/Au electrodes, the fabricated devices were annealed in N\(_2\) at 200 °C for 60 s, in order to achieve better Ohmic contacts [42]. Before the Ni/Au electrodes deposition, the β-Ga\(_2\)O\(_3\) thin film was surface treated by O\(_2\) plasmas for 30 s [43-45]. This is because the Schottky contacts on oxide semiconductors are often challenged by the distinct surface charge accumulation layer [42, 44-47]. The metal-semiconductor contact region is the key issue for successful fabrication of Schottky contacts on various oxide semiconductors, including β-Ga\(_2\)O\(_3\) studied in this work. The O\(_2\) plasmas treatments allow us to increase the oxygen content at the Ni/β-Ga\(_2\)O\(_3\) interface, inducing interface charge reduction for Ni contacts on the surface of β-Ga\(_2\)O\(_3\) and the improvement of Schottky characteristics [43, 46, 49, 50]. The current-voltage (I-V) characteristics are performed with a Keithley 4200 semiconductor parameter analyzer. The measurement of time-dependent photoresponse is finished by using an UV lamp with various intensities through tuning the distance between measuring sample and the UV light source, and the UV light intensities could be read by a light receptor and a display instrument. The crystal structure of the β-Ga\(_2\)O\(_3\) thin film was analyzed by a Bruker D8 Advance x-ray diffractometer (XRD) with Cu K\(\alpha\) (λ ~ 1.5405 Å) radiation. All the measurements in this work were executed in air at room temperature.

3. Results and discussion

As shown in figure 1(a), the X-ray diffraction (XRD) pattern of the β-Ga\(_2\)O\(_3\) thin film grown by MOCVD on c-plane sapphire substrate indicates a good single crystallinity with highly ordered peaks along (201), (402) and (603) directions (JCPDS #43-1012), except for the sharp (0006) peak from the sapphire substrate (JCPDS #46-1212). Figure 1(b) shows a schematic diagram of the fabricated β-Ga\(_2\)O\(_3\) thin film based MSM structured UV solar-blind photodetector. The side length of the quadrate electrode pattern is 400 μm, and the spacing distance between two symmetrical electrodes is 200 μm. So, the efficient UV light radiant area (S) could be calculated to be $8 \times 10^4 \text{ μm}^2$. As key influences on devices output performances, the morphological information of the used β-Ga\(_2\)O\(_3\) thin film is provided. The scanning electron microscope (SEM) image is displayed in figure
1(c), the uniformly claviform grains with well-defined boundaries prove good crystallization of the prepared β-Ga₂O₃ thin film. The plane and tridimensional atomic force microscope (AFM) images are shown in figure 2(d) and (e), respectively, the root mean square (RMS) roughness is 1.234 nm.

Figure 2(a) shows the dark I-V characteristics of the typical back-to-back MSM structured Schottky and Ohmic β-Ga₂O₃ thin film based UV solar-blind photodetectors, in the voltage range from -5 V to 5 V. The good symmetrical I-V curves suggest a good quality and uniform β-Ga₂O₃ thin film, and consistent electrode patterns. At applied voltage of 5 V, the dark current (I_{dark}) of the Schottky and Ohmic devices are 2.65×10^{-13} A and 9.77×10^{-13} A, respectively. The I_{dark} obtained from Schottky devices is more than four times lower than that from Ohmic devices, due to the efficient constraint of carriers (electrons) transport by the interface barrier of Ni/β-Ga₂O₃, instead of the light sensitive I-V behaviors like a resistor [1, 29]. Seen from figure 2(b), the photocurrent (I_{photo}) at 5 V is 5.58×10^{-8} A and 9.76×10^{-8} A for Schottky and Ohmic devices, respectively, and accordingly the photo-to-dark current ratio [(I_{photo} - I_{dark})/I_{dark}] at 5 V is $\sim 2.1 \times 10^5$ and $\sim 1.0 \times 10^5$. The photoresponse, (I_{photo} - I_{dark})/I_{dark} in Schottky device is superior to that in Ohmic devices, which

\[\text{Figure 1.} \] (a) The XRD pattern of the MOCVD-grown β-Ga₂O₃ thin film, (b) the schematic diagram of the fabricated β-Ga₂O₃ thin film based metal-semiconductor-metal (MSM) structured UV solar-blind photodetector. (c) The SEM image of the surface of the β-Ga₂O₃ thin film. (d) Plane AFM surface morphology image of the β-Ga₂O₃ thin films with $5 \times 5 \mu m^2$ scanning area, and the tridimensional AFM image is displayed in (e).
is consistent with the description in reference 8. Meanwhile, the I-V curves of both the Ohmic and Schottky contacted photodetectors are shown in figure 2(c) and (d), respectively. Larger UV light intensities contribute to larger I_{photo} for both two typed devices. The “shoulders” in semi-log scale I-V curves of Schottky devices in figure 2(b) maybe due to the non-uniformity Schottky barriers [51]. As indicated in figure 2(c), the I_{photo} of the Ohmic device exhibits a good linear characteristic, suggesting a great stability of UV light response. The incident photons are absorbed in β-Ga$_2$O$_3$ thin film and changed the electronic energy distribution, leading to a disciplinary and linear increase of I_{photo} [1]. The high $\frac{(I_{\text{photo}}-I_{\text{dark}})}{I_{\text{dark}}}$ of $\sim10^6$ and the excellent linearity of I_{photo} verify that the photodetectors presented in this work are sensitive and stable. In addition to the results in figure 2(b), the photocurrent under the 365 nm UV light illumination show a small increase, compared to that in the dark, the small increase maybe due to the defects in β-Ga$_2$O$_3$ thin film and/or the unpurified UV light source [14]. This little variation between 365 nm light illumination and dark

Figure 2. (a) The linear-scale I-V characteristics of the MOCVD-grown β-Ga$_2$O$_3$ thin film based photodetector in the dark for Schottky Ni/Au (red dot line) and Ohmic Ti/Au contacts (black full line). (b) The semi log-scale I-V characteristics of both the Schottky (Ni/β-Ga$_2$O$_3$/Ni) and Ohmic (Ti/β-Ga$_2$O$_3$/Ti) devices in the dark, under the 254 nm and 365 nm UV light illuminations with intensities of 500 μW/cm2. The linear-scale I-V curves of (c) Ohmic devices and (d) Schottky devices in the dark and under the 254 nm UV light illuminations with intensities from 100 μW/cm2 to 500 μW/cm2, step is 100 μW/cm2.
condition suggests an outstanding wavelength selectivity, in comparison to the sharp increasing I_{photo} under 254 nm UV light illumination.

Figure 3 shows the time-dependent photoresponse and the voltage-dependent I_{photo} of the β-Ga$_2$O$_3$ thin film grown by MOCVD at voltages from 1 V to 5 V under the 254 nm UV light illumination with a light intensity of 500 μW/cm2. The I_{photo} increase with the applied voltage increase for both Schottky and Ohmic contacted photodetectors, which can be clearly seen in figure 3(a) and (b). As indicated by figure 3(c), the I_{photo} in Ohmic devices are higher than that in Schottky devices. Taking the time-dependent I_{photo} (5 V and 500 μW/cm2) as an example, the rise and decay time (τ_r and τ_d) of the devices are exhibited and discussed, as displayed in figure 4. In figure 4(a) and (b), the fitting of the time-dependent photo responding curves are according to an exponential relaxation equation [52]:

$$I = I_0 + Ae^{-t/\tau}$$ \hspace{1cm} (1)

where I_0 is the stable state photocurrent, A is a constant, t is the time, τ is a relaxation time constant. τ_r and τ_d are the rise and decay edge of the time constants, respectively. In addition, the I_{photo} at different voltages ranging from 1 V to 5 V are shown in figure 4(c). The τ_r and τ_d of Ohmic devices are larger than that of Schottky devices, suggesting a faster photoresponse of Schottky devices compared to that of the Ohmic devices. The faster photoresponse in Schottky devices verifies a rapid change of electron concentration as soon as the UV light is radiated on the surface of the β-Ga$_2$O$_3$ thin film, while the slower photoresponse of Ohmic devices maybe due to the electron traps at M-S interface, caused by some defects at the M-S interface and/or in the β-Ga$_2$O$_3$ thin film. What could be clearly seen in figure 4(a) and (b) is that the rise edge and decay edge for Schottky and Ohmic devices are different obviously. Using equation (1), the τ_r and τ_d of Ohmic devices are 0.706 s and 0.29 s, respectively, which are larger than those of 0.31 s and 0.156 s of Schottky devices. In detail, the voltage-dependent I_{photo} are given in figure 4(c) and (d), the τ_r and τ_d presented here indicate that the Schottky device has faster photoresponse than the Ohmic devices at the applied voltages range from 1 V to 5 V. Moreover, for these two typed devices, the larger applied voltages could achieve faster photoresponse, i.e., smaller τ_r and τ_d, owing to the larger kinetic energy that electron acquired from higher voltages [12]. In general, the fast light response could be attributed to the rapid change of the electron concentration of the β-Ga$_2$O$_3$ thin film as soon as the UV light
was turned on and/or off. For Ohmic (Ti/Au) devices, the response process was deeply affected by
the interface trapping and oxygen vacancies defects, therefore, the rise and decay time of the Ohmic
devices are long. However, for the Schottky (Ni/Au) devices after O₂ plasmas treatments at the Ni/β-
Ga₂O₃ interface, decent Schottky electrical behaviors were obtained, and also, the electrons can be
photogenerated and recombined faster than that of the Ohmic devices, due to the weaker influences
of traps and defects on the light responses [8, 53-55].

Figure 3. The continuous time-dependent photoresponse of the β-Ga₂O₃ thin film grown by
MOCVD at voltages from 1 V to 5 V under the 254 nm UV light illumination with a light intensity
of 500 μW/cm² for (a) Ohmic devices and (b) Schottky devices. (c) The voltage-dependent
photocurrents under the 254 nm UV light illumination with a light intensity of 500 μW/cm².

Figure 4. The rise and decay time of the β-Ga₂O₃ thin film based photodetector of (a) Ohmic devices
and (b) Schottky devices responding to the 254 nm UV light with a light intensity of 500 μW/cm²
at 5 V, with Ti/Au and Ni/Au electrodes, respectively. The voltage-dependent (c) rise time and (d)
decay time for Schottky and Ohmic devices.

As reported, the band structure of β-Ga₂O₃ along a continuous path in the Brillouin zone has
been studied [56-59]. According to these results, the conduction-band minimum β-Ga₂O₃ material
is located at Γ point, and the corresponding bandgap is only about 0.04 eV larger than those at other
points in the band structure [57]. In addition, the secondary conduction bands at Z and Y points just
have minimal values, as well as the minima at N and X points. So the bandgap of β-Ga2O3 is direct
with an acceptable deviation [56-59] at every points in its energy band structure. For understanding
the inherent physical mechanism of the operating Schottky Ni/Au contacted and Ohmic Ti/Au
contacted β-Ga2O3 photodetectors, the systematic band diagrams of β-Ga2O3 with Ti and Ni in the
dark and under the 254 nm UV light illumination are shown in figure 5(a)-(d). The work functions
of Ti and Ni (Φ(Ti) and Φ(Ni)) are 4.33 eV and 5.15 eV, respectively, and the electron affinity of
β-Ga2O3 [χ(β-Ga2O3)] is about 4.00 eV as reported [60-62]. So, the interface barriers of β-Ga2O3
with Ti and Ni (∆φTi-β-Ga2O3 and ∆φNi-β-Ga2O3) could be calculated to be 0.33 eV and 1.15
eV, on the basis of the Schottky-Mott rule [29, 30]. The puny interface barrier between Ti and β-
Ga2O3 contributes to the Ohmic M-S contact, while the larger interface barrier between Ni and β-
Ga2O3 leads to the Schottky M-S contact. The I-V behavior of Ohmic devices could be expressed
by the electron tunneling, while for the Schottky contact, the I-V characteristic could be described
by the thermionic emission (TE) theory [63-65]:

\[J = J_0 \exp \left(\frac{eV}{kT} \right) - 1 \] \hspace{1cm} (2)

and

\[J_0 = A^* T^2 \exp \left(- \frac{\varphi_B}{kT} \right) \] \hspace{1cm} (3)

where \(J_0 \) is the saturation current density, \(A \) is the area of M-S contact, \(A^* \) is the efficient
Richardson constant \((A^* = \frac{4\pi n e m^* k^2}{h^3}) = 41.1 A/cm^2 \cdot K^2 \) by taking \(m^* \) of 0.342\(m_0 \), \(m_0 \) is the free
electron mass of β-Ga2O3 [66, 67], \(k \) is Boltzmann constant, and \(\varphi_B \) is the barrier height and
expressed as \(\varphi_B = \frac{kT}{q} \ln \left(\frac{A^* T^2}{J_0} \right) \). As displayed in figure 5, the built-in electrical field (\(V_{\text{built-in}} \)) is
developed when the Ni and β-Ga2O3 contacts. In the dark, as shown in figure 5(a) and (c), the larger
interface barrier in Schottky device could restrict electron transport across the Ni/β-Ga2O3 interface,
while the Ohmic device is almost like a radiation (UV light)-sensitive resistor with tiny interface
barrier. Therefore, the \(I_{\text{dark}} \) in Ohmic device is larger than that in Schottky device as displayed in
figure 2(a), and the Schottky device may be more sensitive to the small signal owing to its smaller
\(I_{\text{dark}} \). Under 254 nm UV light illuminations, as displayed in figure 5(b) and (d), the incident photons
with energy ($h\nu$) greater than the energy bandgap of the β-Ga$_2$O$_3$ thin film could be absorbed by the β-Ga$_2$O$_3$ material and then produce the photo-generated electron-hole pairs (electrons at valence band are motivated to the conduction band by absorbed photons, and correspondingly holes are produced at the valence band), thereby changing the electrical conductivity of β-Ga$_2$O$_3$. Given a voltage, the electrons in β-Ga$_2$O$_3$ are pushed to the conduction band, while the holes are driven to the valence band. For Ohmic Ti/Au contacted β-Ga$_2$O$_3$ photodetector studied here, the I_{photo} is linearly improved by the incident 254 nm UV light. While for the Schottky Ni/Au contacted β-Ga$_2$O$_3$ photodetector, the I-V characteristics show Schottky (rectifying) behaviors owing to the interface barrier between Ni metal electrode and β-Ga$_2$O$_3$ thin film. This phenomenon could be obtained whether the 254 nm UV light is turned on or not [1].

Figure 5. Band diagram of the β-Ga$_2$O$_3$ with Ti (a) in the dark and (b) under the 254 nm light illumination. Band diagram of the β-Ga$_2$O$_3$ with Ni (c) in the dark and (d) under the 254 nm light illumination.

For photodetectors, responsivity (R) and detectivity (D^*) are two vital parameters to evaluate the detector performances and could be described as following relationships [68]:
\[R = \frac{I_{\text{photo}} - I_{\text{dark}}}{P_{\text{light}} \cdot S} \]

(4)

and

\[D^* = \frac{R_{254}}{\sqrt{I_{\text{dark}} \cdot S}} \]

(5)

where \(P_{\text{light}} \) is the UV light intensity used in the measurements, \(S \) is the efficient radiant area in devices, \(R_{254} \) is the photo responsivity under 254 nm light illumination. According to equation (4) and (5), the \(R \) and \(D^* \) by different driven voltages and light intensities are displayed in figure 6(a)-(d) for Schottky and Ohmic \(\beta\text{-Ga}_2\text{O}_3 \) thin film based UV solar-blind photodetectors. Seen from figure 6(a), with the UV light intensity of 500 \(\mu \text{W/cm}^2 \), the responsivities increase with the increasing voltages from 1 V to 5 V, for both the Schottky (from 1.68 mA/W to 0.14 A/W) and Ohmic (from 49 mA/W to 0.25 A/W) devices. The responsivities for Ohmic devices ranging from 1 V to 5 V are all higher than those of Schottky devices, due to the larger \(I_{\text{photo}} \) of Ohmic devices compared to the Schottky devices, as well as the same \(P_{\text{light}} \) intensities and \(S \), following the description in equation (4). In addition to the responsivities with different UV light intensities, the \(R \) of Ohmic devices are also higher than those of Schottky devices, as shown in figure 6(c). The responsivities are increased by the increasing light intensity. By contrast, the Ohmic device could make more photogenerated electron-hole pairs to generate \(I_{\text{photo}} \) than the Schottky devices [1, 69-72].

While the detectivities are governed by responsivities and the square root of \(I_{\text{dark}} \) for a photodetector, as given in equation (5). As shown in figure 6(b), the \(D^* \) of Schottky devices are larger than that of Ohmic devices, owing to superlow \(I_{\text{dark}} \) (3.2 \(\times \) 10\(^{-16} \) A) of Schottky devices at 1 V, which should be contributed to the rectifying effect caused by the Ni/\(\beta\text{-Ga}_2\text{O}_3 \) interface barrier. In comparison, the \(D^* \) of Schottky device at 2 V to 5 V are obviously smaller than that at 1 V, this trend is in accordance with the rectifying I-V curves in figure 2(d). For Ohmic devices, the \(I_{\text{dark}} \) is always kept at ~ 10\(^{-11} \), so the \(D^* \) have the same evolutive tendency with \(R \) as displayed in figure 6(a). In figure 6(d), the \(D^* \) of Schottky devices are slightly larger than those of Ohmic devices at 5 V with 254 nm UV light intensity from 100 \(\mu \text{W/cm}^2 \) to 500 \(\mu \text{W/cm}^2 \) with a step of 100 \(\mu \text{W/cm}^2 \), in accordance with the results in figure 6(b) at 5 V, indicating a better characterizing parameter for normalizing signal-to-noise ratio [1].
Figure 6. The voltage-dependent (a) responsivity and (b) detectivity for both Schottky Ni/Au and Ohmic Ti/Au contacted β-Ga$_2$O$_3$ thin film based UV solar-blind photodetectors with 254 nm UV light intensity of 500 μW/cm2 from 1 V to 5 V with a step of 1 V. The UV light intensity-dependent (c) responsivity and (d) detectivity for both Schottky Ni/Au and Ohmic Ti/Au contacted β-Ga$_2$O$_3$ thin film based UV solar-blind photodetectors at 5 V with 254 nm UV light intensities from 100 μW/cm2 to 500 μW/cm2 with a step of 100 μW/cm2.

4. Conclusions

In summary, in this study, we grew β-Ga$_2$O$_3$ thin film by using metal-organic chemical vapor deposition technique, and made a comparison of optoelectrical properties of the prepared β-Ga$_2$O$_3$ thin films with Schottky Ni/Au and Ohmic Ti/Au contacted electrodes. The results show that Schottky device has higher photo-to-dark current ratios, and faster photo response speed than those of the Ohmic device. Working as a UV solar-blind photodetector, the responsivities of Schottky devices are larger than those of Ohmic devices. Owing the lower I_{dark}, the D^* of Schottky devices are superior to those of Ohmic devices at 5 V with light intensity from 100 to 500 μW/cm2. What’s more, with 500 μW/cm2 light intensity, the different D^* from 1 V to 5 V are also discussed on the basis of the Schottky I-V behaviors. In a word, we discussed and analyzed the differences between Schottky and Ohmic contacted β-Ga$_2$O$_3$ thin film based UV solar-blind photodetectors, and give out some inherent physical mechanism, in order to present the effect of metal-β-Ga$_2$O$_3$ contacted types (Schottky or Ohmic) on the devices performances, as well as their differences, operating as a UV solar-blind photodetector.
Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61774019, 51572033, and 51572241), the Beijing Municipal Commission of Science and Technology, China (Grant No. SX2018-04). In addition, the authors acknowledged the Fundamental Research Funds for the Central Universities and the Foundation of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications).

References

30. Schottky W 1939 Z. Phys. 113 367
40. Thomson G W 1946 Chem. Rev. 38 1
60. Michaelson H B 1977 J. Appl. Phys. 48 4729
63. Furno M, Bonani F and Ghione G 2007 Solid-State Electron. 51 466
64. Latreche A 2019 SN Appl. Sci. 1 188
69. Rose A 1963 Concepts in Photoconductivity and Allied Problems (NY: Inter-science)