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ARTICLE OPEN

Wearable multifunctional printed graphene sensors
Altynay Kaidarova 1, Mohammed Asadullah Khan1, Marco Marengo1, Liam Swanepoel1, Alexander Przybysz1, Cobus Muller2,
Andreas Fahlman3, Ulrich Buttner1, Nathan R. Geraldi 4, Rory P. Wilson5, Carlos M. Duarte 4 and Jurgen Kosel 1

The outstanding properties of graphene have initiated myriads of research and development; yet, its economic impact is hampered
by the difficulties encountered in production and practical application. Recently discovered laser-induced graphene is generated by
a simple printing process on flexible and lightweight polyimide films. Exploiting the electrical features and mechanical pliability of
LIG on polyimide, we developed wearable resistive bending sensors that pave the way for many cost-effective measurement
systems. The versatile sensors we describe can be utilized in a wide range of configurations, including measurement of force,
deflection, and curvature. The deflection induced by different forces and speeds is effectively sensed through a resistance
measurement, exploiting the piezoresistance of the printed graphene electrodes. The LIG sensors possess an outstanding range for
strain measurements reaching >10% A double-sided electrode concept was developed by printing the same electrodes on both
sides of the film and employing difference measurements. This provided a large bidirectional bending response combined with
temperature compensation. Versatility in geometry and a simple fabrication process enable the detection of a wide range of flow
speeds, forces, and deflections. The sensor response can be easily tuned by geometrical parameters of the bending sensors and the
LIG electrodes. As a wearable device, LIG bending sensors were used for tracking body movements. For underwater operation,
PDMS-coated LIG bending sensors were integrated with ultra-low power aquatic tags and utilized in underwater animal speed
monitoring applications, and a recording of the surface current velocity on a coral reef in the Red Sea.

npj Flexible Electronics            (2019) 3:15 ; https://doi.org/10.1038/s41528-019-0061-5

INTRODUCTION
Bending sensors provide an electrical signal as a function of the
bending radius or curvature.1 Such sensors offer an extremely
versatile sensing platform capable of measuring changes of
various physical quantities. They can be made lightweight, low-
cost, and robust and tolerate vibration, thermal shock and
stretching without electromagnetic interference or sensor occlu-
sion.2 The application areas of bending sensors are rapidly
increasing, including medical,3,4 automotive,5 industrial,6,7 physical
activity measurements,6,8 and human–machine interactions.9 In
case of passive resistive bending sensors, an electrically con-
ductive pattern or electrode is fabricated on top of a flexible
substrate, and changes its resistance upon substrate bending.
These electrodes have been realized by on carbon-based materials
(powder,10 ink,11 and particles12), transition metals (silver,13

copper,14 and platinum15), and conductive polymers,16 which
determine the basic electrical properties of the sensor.
In this paper, we exploit the piezoresistance of graphene

electrodes printed on flexible polyimide (PI) films. Graphene has
been extensively exploited recently as an alternative to traditional
materials, due to its superior properties, such as high conductivity,
flexibility, transparency, and biocompatibility,17,18 There is a
number of reports investigating electromechanical properties of
the graphene based on CVD,19–21 mechanically exfoliated
graphene,22,23 graphene oxide,24–26 and hydrogenated graphene
oxide.20,27 The intrinsic piezoresistivity of single-layer graphene is
rather limited as the hexagonal mesh of graphene can withstand

strains only below ~0.7% with gauge factors (GF) of ~1.4-2.28–31

Meanwhile, the responsivity of multilayered structures, such as
graphene oxide24–26 and hydrogenated graphene oxide is
significantly higher.20,27 The high variation of the electrical
resistance of multilayer samples under strain was explained by
the displacement of the layers and changing their overlapping
area, which provides the ability to use these structures for force
and strain sensors.20

In 2014, it was discovered that direct lasing of PI films leads to
the formation of 3D porous graphene,32–34 by a photothermal
process associated with a localized high temperature, the pressure
produced by laser irradiation and easy absorption of long-
wavelength radiation. This process enables the development of
LIG bending sensors that are mechanically flexible, lightweight,
robust, and multifunctional. Several studies on LIG strain sensors
have investigated the laser power effect on the GF of the
functionalized LIG,35–37 some focused on embedding LIG on cured
elastomers,38–41 while others discovered alternative lasers that
fabricate LIG,42,43 The piezoresistive properties of LIG were utilized
for generating and detecting sounds,43 gesture registration,35

respiratory rate,44 and human–machine interface.40 The LIG
sensors in this study are used for the detection of curvature,
force, deflection, and flow. The LIG bending sensor can also
operate in harsh conditions, and is fabricated by a simple process
without the requirement for a clean room, solvents, and
subsequent treatments or other supporting processes. The sensor
is customized for different applications simply by adopting the
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geometry, while achieving a homogeneous bidirectional response,
temperature compensation, and high accuracy.
Here, we demonstrate the versatility and potential of LIG

sensors, and challenge their performance under harsh conditions.
In particular, we used LIG sensors as a wearable device to monitor
body movements of marine animals in various locations in the Red
Sea. We did so by combining the LIG sensors with ultra-low power
aquatic tags. The Red Sea is the warmest (up to 36 °C in surface
waters)45 and saltiest (20% above standard ocean salinity46) of all
seas, and offer conditions prone to corrosion and pressure-derived
failure of electronic devices.
Speed sensing of underwater animals is especially challenging,

due to the harsh conditions in the Red Sea combined with the
requirement for low weight, size, and power consumption. Speed
sensing of marine animals is fundamental to quantify their energy
expenditure, which, in turn, is crucial for understanding their
foraging behaviors, biogeography, life history, and many con-
servation efforts.47 Animal-attached bending sensors could
provide an opportunity to observe energy expenditure by
quantifying the velocity of the animal body over time.48 The
most commonly employed method for speed sensing is the
overall dynamic body acceleration, where a derivative of
acceleration is used as a proxy for the metabolic rate.48 This
indirect method suffers from the inability to estimate the energy
budget in the case of stationary activities and time-varying flow
velocity. Other methods have exploited turbines,49,50 paddle
wheels51 rotated by ambient water flow, and reflectance of
infrared light against a flexible paddle.52 Meanwhile, commercially
available flow sensors use various operating principles, such as
differential pressure meters,53 variable area flowmeter,54 electro-
magnetic,55 vortex,56 ultrasonic,57 and Coriolis mass.58 These
solutions have limited capabilities, either due to fragile moving
part or high installation and maintenance cost. They are also
susceptible to biofouling and blockage due to an accumulation of
foreign particles. Additional protective housings, employed to
remedy some of these issues, increase the size, buoyancy and

weight associated with the device, which has been shown to
influence animal behavior, swimming, and diving performance.7

Another active research area is oriented toward obtaining
spatiotemporal information of human body movements using
flexible, noninvasive, cost-effective, lightweight, and low-power
sensors to continuously track segments of the body over
extended periods and without reducing freedom of movement.
LIG bending sensors could be advantageously utilized for long-
term monitoring of human movement in kinesiology, physiother-
apy, rehabilitation, telehealth, or in the control of prosthetic limbs.

RESULTS AND DISCUSSION
Characterization of LIG bending sensor
The surface morphology of the carbon network patterns was
qualitatively investigated by scanning electron microscopy (SEM,
Quanta 600FEG Systems). A cross-sectional view of the carbon
patterns on top of the PI film is shown in Fig. 1, indicating that the
entire volume of the LIG is comprised highly porous nanomater-
ials. The structural characteristics of the porous graphene were
also examined via confocal Raman spectrum (Fig. 1d), revealing
three distinctive peaks at 1360 cm−1 (D-band), 1580 cm−1 (G-
band), and 2720 cm−1 (2D-band) and thereby, suggesting the
presence of graphene sheets in the porous structure. The G peak is
related to the vibration of sp2 carbon atoms in the hexagonal
plane, and its intensity is lower in monolayer graphene.59 The D
peak is activated by disorder and defects and correspond to
intravalley double resonance processes.60 The 2D peak is the key
one in monolayer graphene that reduces and widens, as the
number of layers increases.61 The XPS spectrum, shown in Fig. 1e,
reveals a dominant C—C peak, with greatly suppressed C—O, C=
O, and COO peaks, suggesting the dominance of sp2-carbon in
LIG.47

Fig. 1 a Cross-sectional SEM image of the porous carbon network lying on the top of polyimide (scale bar: 30 μm). b Low-magnification SEM
image shows the porous morphology of LIG (scale bar: 15 μm). c High-magnification SEM image shows the graphene flakes randomly
arranged and interconnected (scale bar: 5 μm). d Raman spectrum of LIG acquired with a laser wavelength of 473 nm. e High-resolution XPS
spectrum of the C1s region of LIG
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A typical factor used to characterize strain sensors is the Gauge
factor (GF),

GF ¼ dR=R
dl=l

¼ dρ=ρ
ε

þ 1þ 2ν; (1)

where Δl/l is the strain, R is the resistance under zero strain, ρ is
the electrical resistivity, ν is the Poisson ratio (νKapton= 0.34).62 An
LIG electrode in the form of a strip with a length of 30mm, a width
of 2 mm, and initial resistance of ~0.7 kΩ was used to evaluate the
GF. Both ends of the strip were fixed by sample holders (inset of
Fig. 2) of an electromechanical pull tester (5900-Series, Instron
Inc.), which provided a continuously increasing force and
measurement of the resulting displacement. A continuous current
of 1 mA was applied through the graphene strain sensor (as in all
consecutive experiments) to measure the change of electrical
resistance during the tensile deformation of the sensor with a
Keithley 2400 Source Meter. Figure 2 reveals a linear relationship
between strain and relative change in resistance. The increase in
resistance is attributed to a narrow and long conductive porous
structure. The GF ≃ 11.2 (Young modulus ≃ 2.1 GPa, yield strength
≃ 83 MPa) is extracted from the slope, and is in the range of the
values of metal strain gauges. Note, the maximum strain applied
was > 10%. The intrinsic contribution to the piezoresistivity was

found to have ((dρ/ρ)/dl/l= 0.84) a positive sign, suggesting a
positive piezoresistivity.

Force, deflection, and flow detection
The electromechanical pull tester was used to induce deflection of
the LIG sensor, as shown in the insets of Fig. 3. The resistance
variation of the sensor in tension state (LIG on the convex side)
has a linear relationship with the exerted force and the sensor
deflection. The electrical resistance of the LIG sensor, shown in Fig.
3a (width: 7 mm, length: 7.6 mm, number of turns: 11), increases at
the rate of ~2.98Ω/mN and ~0.21Ω/μm at room temperature.
Conversely, the LIG bending sensor shows a decreasing resistance
in compression state (LIG on the concave side), reducing at the
rate of ~2.91Ω/mN, ~−0.21Ω/μm (Fig. 3). The absolute change in
resistance is tailored by the number of turns of the LIG electrodes
as seen in Fig. S1a. An increased number of turns with the same
dimensions did not affect the normalized sensitivity, since the
percentage change in resistance for a given strain for the entire
LIG path is the same as for any single trace. Using shorter
electrodes (7 mm) results in a higher sensitivity than longer ones
(15 mm) with the same number of turns (Fig. S1b), as expected
from Eq. (3).
To test the response of a LIG bending sensor to different flow

rates, a setup was constructed wherein a fluid flowing inside a
tube bent the sensor toward the direction of fluid flow (Fig. 4). The
bulk flow of the fluid is quantized by the bending moment
exerted on the bend sensor that is caused by the drag associated
with the flowing fluid.5 The flow tube for sensor testing was
assembled using two segments of opaque PVC (0.73 -m length)

Fig. 2 Strain-induced resistance change of LIG

Fig. 3 Average resistance as a function of a force and b deflection induced during extension and compression of LIG. The error bars indicate
the standard deviation. The coefficient of determination (R2) is 0.9961 during extension and 0.9984 during compression

Fig. 4 Schematic of the flow test setup. The inset shows the
bending the LIG sensor toward the direction of fluid flow
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and transparent acrylic (0.29 m), with the same internal diameter
of 36 mm. A ball valve, for the regulation of the flow rates during
testing, was fitted to one end of the PVC pipe, which was
connected by a flexible hose to a submerged pump (DC Runner
2.1, Aqua Medic) in a seawater basin. The ultrasonic flow meter
(Siemens Sitrans, FUP 1010) was installed on the PVC section of
the flow tube for measuring the water flow rates to the test sensor
that was vertically fixed and adhesive-sealed through a slit on the
acrylic tube. With the acrylic tube being transparent, it provided
clear visualization of the sensor bending at various flow rates
during testing. Hence, the flow experiments were conducted with
a velocity up to 3m/s to minimize effects of turbulent flows.
Figure 5a and b show responses of the bending sensor, when the
water flow induces tension and compression, respectively, in the
LIG electrodes. The sensor response is linear within the speed
range of 0.5–3m/s. The sensitivities obtained for the flow sensor
are ~100Ω/(m/s) and ~110Ω/(m/s), for the cases of LIG tension
and compression, respectively.

Double-sided LIG sensor
The sensor concept in combination with the simple fabrication
process, allow fabricating a double-sided LIG sensor, where the
LIG electrodes are patterned on both sides of the PI film (Fig. 6a,
b). By utilizing a difference measurement, where the output
signals of the sensor under compression and tension are
subtracted, several advantages arise. First, an equal directional
response is obtained for both bending directions, since compres-
sive and tensile responses are added up. Second, the output
voltage is zero under zero-load condition, allowing for higher
signal amplification. Third, a rejection of common input signals is
achieved. An example for the latter is the effect of temperature,
which is removed by using the double-sided LIG sensor. As
previously reported, the resistance of LIG electrodes decreases by
4% over a temperature range of 20–60 °C.63 By measuring the
resistance change of both sensor electrodes of the LIG sensor (Fig.
7a) and subtracting them from each other (Fig. 7b), the electrode

deflection and applied force can be determined, with the same
sensitivity in both bending directions. Since both LIG electrodes
are affected by the same temperature (Fig. 8a), signal subtraction
results in a complete compensation of the temperature effect
(Fig. 8b). This is possible, due to the close proximity of the printed
electrodes (~50 μm) and high thermal conductivity of PI (0.46 W
m−1 K−1).

Marine animals monitoring
The LIG bending sensors proves a powerful tool, when coupled
with aquatic tags, such as Aquamote64 and Daily diary,65 to allow
reconstruction of fine-scale behavior. Animal monitoring experi-
ments were carried out at the Oceanographic Foundation
Research Center in Valencia on a Bottlenose dolphin (the genus
Tursiops) and a Loggerhead sea turtle (Caretta caretta). To this end,
an LIG sensor of 17.2 kΩ resistance, shown in Fig. 9 (width: 7 mm,
length: 15mm, number of turns: 11), was integrated with a
commercial tag (ICM-20948, TDK InvenSense), which was attached
to the dolphin’s spine noninvasively by a vacuum sucker (Fig. 10a),
and the turtle’s carapace by a waterproof velcro (VLC02, Velcro®
Brand Marine Grade Hook and Loop) and pure epoxy compound
(Subcoat S, Veneziani Yachting) (Fig. 11a). The resistance of the LIG
tag was recorded during a dolphin’s training session and
translated to swimming speeds via a calibration obtained from
Fig. 6. Different maneuvers, such as shallow-, medium-, and deep
diving and swimming (Fig. 10b) were carried out by the dolphin in
3 min, and were clearly reflected in the sensor response, with a
maximum speed of ~2.7 m/s reached during deep diving and an
average speed of ~0.8 m/s, ~1.3 m/s, ~2 m/s, and ~0.4 m/s for
shallow-, medium-, and deep diving and swimming, respectively.
The overall average and median speeds of the Bottlenose dolphin
were ~0.32 m/s and ~0.3 m/s, respectively. The speed recorded
when the dolphin was swimming at the surface of the water is
likely inaccurate, due to submerging of the sensor. A different
sensor position could help remedying this problem.
The measurements of the sea turtle’s speed required a more

sensitive speed sensor than the one used for the dolphin, due to
the slower motion of the turtle. As described above, the sensitivity
can be easily tailored by increasing the cantilever length or area.
Therefore, the sensor design was modified to increase its area by
the addition of a 2 × 2 cm2 patch, as shown in Fig. S3. The sea
turtle reached the maximum speed of ~1.82 m/s, when swimming
to the surface to breath, which happened seven times during the
recorded ~4 h (Fig. 11b). The average and median speeds of the
turtle were ~0.51 m/s and ~0.53 m/s, respectively. The turtle was
constantly in motion with the lowest speed reaching ~0.1 m/s.

Fig. 5 The response of the bending sensor to different flow velocities, when the LIG electrode is a extended and b compressed

Fig. 6 Schematics of a a double-sided LIG bending sensor and b its
cross-section with the stress, due to bending

A. Kaidarova et al.

4

npj Flexible Electronics (2019)    15 Published in partnership with Nanjing Tech University



Flow velocity monitoring
Another LIG sensor (width: 7 mm length: 15 mm, number of turns:
3) was combined with a Daily Diary tag (TDR10-DD, Wildlife
computers), which had a size of 20 × 20 mm2 (Fig. 12a), to
measure the flow velocity of the underwater currents at the Al
Fahal coral reef in the Cental Red Sea (geographic coordinates:

22.25285 °N, 38.96123 °E, average salinity: ~35%, average tem-
perature ~33 °C) (Fig. 12b; Supplementary Movie 1). The result of a
flow measurement over ~1 h (Fig. 12c) reveals that surface current
flow had average and median speeds of ~0.47 m/s and ~0.48 m/s,
respectively, with an occasional increase to a maximum speed of
~0.92 m/s. The minimum speed was ~0.21 m/s.

Fig. 7 a The responses of a double-sided LIG sensor to bending with the LIG under tension and compression states. b The results of difference
measurements

Fig. 8 a The resistance of the LIG temperature sensor as a function of temperature. Each data point represents the average of three measured
values; each error bar connects the maximum and the minimum values. b The result of subtracting the average output signals of electrodes
from each other

Fig. 9 a LIG electrodes (black) patterned on a flexible polyimide sheet (orange). b Schematic of a cross-section of piezoresistive
cantilever beam
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Wearable device
The schematic illustration of LIG bending sensors attached to
various body locations for associated detection of joint-bending-
related motions, such as fingers, elbows, knees, ankle, and neck, is
shown in Fig. 13. LIG sensors of various geometry were directly and
noninvasively mounted using 0.1 g of biocompatible petroleum
jelly (Vaseline® Products). The responses of the index finger
bending forward and backward consecutively with various speeds

(~0.1 bends/min and ~0.25 bends/min) are shown Fig. 13a. Figure
13b displays knee-related motions, which discriminate walking,
jogging, and squatting according to their distinctly differentiated
waveforms. The combinations of two or more LIG sensors would
allow the measurement of multiple DOFs, such as torso, shoulder,
and ankle. A hypnagogic jerk (sleep start or hypnic jerk) is a brief
contraction of the body that occurs involuntarily, when a person is
beginning to fall asleep, which often causes the person to jump

Fig. 10 a LIG bending sensor integrated with ultra-low power Aquamote tag (scale bar: 2 cm) and attached to a dolphin’s spine. b The
resistance of the LIG sensor and corresponding swim speed of the dolphin as a function of time for a duration of 3min

Fig. 11 a LIG bending sensor integrated with commercial tag (scale bar: 1 cm) and attached to the sea turtle. b The recorded speed of sea
turtle as a function of time for a duration of 4 h
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and awake suddenly. The associated movement of the head results
in neck bending, which can be monitored for assessing drivers
vigilance.66,67 This head movement was measured by means of an
LIG bending sensor attached to the neck, as seen in Fig. 13c.

The outstanding material properties of LIG opened new
perspectives for a versatile, durable, printed bending sensor
capable of detecting flow, deflection or force across a range of
conditions, and on a range of subjects. The flexibility in geometry

Fig. 13 a Schematic of wearable LIG bending sensors attached to different positions of a human body to monitor joint-bending-related
motions. b Monitoring the response of finger bending c Knee-related motion monitoring: walking, jogging, and squatting. d Microsleep
detection by monitoring head nodding and waking up

Fig. 12 a Tag deployment in Al Fahal Reef of Red sea to measure flow velocity. Inset shows the LIG bending sensor integrated with a Daily
Diary tag (scale bar: 1 cm). b Recorded resistance as a function of time for a duration of 1 h
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and a simple fabrication process allow simple tuning of the
bending sensor to achieve different sensitivities or dynamic
ranges. Using tensile stress/strain measurements, a Young
modulus of 2.1 GPa and yield strength of 83 MPa were found for
the sensor with LIG printed on 125 -µm-thick Kapton tapes. The
gauge factor of LIG is 1.16 with a piezoresistive coefficient of
~0.84. The sensor has a very large range with maximum strains
reaching 14%. Bending tests in the form of cantilever deflection
and point load showed a linear response to compressive and
tensile bending of the LIG. A double-sided electrode concept was
developed by printing on both sides of the Kapton. In combina-
tion with a difference measurement, an increased and homo-
geneous bidirectional response was obtained with full
temperature compensation. The sensor can also withstand harsh
environment conditions over an extended period of time.
The developed LIG sensors were applied in several applications

to demonstrate their versatility, such as marine animals’ speed
monitoring, current flow velocity measurements in a coral reef, as
well as human joint bending and motion tracking. Thereby, the
LIG sensors feature lightweight and minimal intrusiveness,
accommodating the requirements to monitor animals with very
different velocities and behaviors. Attached to the human body,
the wearable sensors operated at large bending ranges, showing a
great potential for personal healthcare monitoring, smart pros-
thetics, and human–machine interactions.

METHODS
Fabrication of LIG sensor
Conductive porous graphene electrodes were directly patterned on
commercial PI films of 125 μm in thickness (Kapton # IM301449, DuPont,
Delaware, USA) using a CO2 infrared laser (wavelength 10.6 μm, laser spot
diameter ~150 μm, Universal Laser Systems® PLS6.75) in ambient condition
and used as piezoresistors. The laser beam parameters of 3.6 W power,
3 cm/s speed, 1000 pulses per inch, and 3 -mm laser-to-surface distance
were tuned to obtain good adhesion of the carbon network to the
substrate and achieve the porous morphology. The printed electrode
pattern was structured in a meander shape (Fig. 1a) to provide a large
change in resistance, while keeping the minimum electrode width (
~150 μm, corresponding to the laser spot diameter). To provide a stable
wire connection to the sensor, 80 nm of gold were sputtered on top of
both contact pads, as shown in Fig. 1a. The electrical wires were connected
using conductive epoxy (CW2400, CircuitWorks. Inc), which features strong
mechanical bonds, excellent electrical conductivity, and quick room
temperature curing. Finally, in case of operation in conductive media like
seawater, a polydimethylsiloxane (PDMS) coating was applied to avoid
interference with the measurement, due to shunt currents. PDMS (Dow
Corning Corp., Slygard® 184) with a ratio of 10 (base):1 (curing agent) was
spin coated on top (2500 revolutions per min for 90 s) of the device, and
the sample was placed in a vacuum desiccator for 20min to eliminate air
bubbles. Then, this passivation layer was cured in the oven at 80 °C for 1 h.
The thickness of the PDMS was 10 µm.

Working principle
The bending sensor utilizes LIG on a flexible PI film to transduce a signal
via cantilever deflection, i.e., it is supported at one end with the other end
free (Fig. 1b). An external force, F, applied to the tip of the cantilever
induces a uniaxial stress,68,69

σ ¼ F L� dð Þc
IA

; (2)

where, L is the cantilever length, c is the distance to the neutral axis, d is
the distance from the support, and IA is the area moment of inertia.
Therefore, the longitudinal stress varies linearly through the cantilever
thickness and along its length. The maximum stress, σmax, occurs at the
surface of the cantilever at the anchor point, as shown in Fig. 1b. The
interaction of sensor with an external force, such as water flow, along the
y-axis induces a cantilever bending and fractional resistance change that

can be approximated by68–71

ΔR
R

¼ πlσmax ¼ 6πlðL� Lpr=2Þ
wt2

F; (3)

where πl is the piezoresistive coefficient, Lpr is the length of the
piezoresistor, t and w are the thickness and width of the cantilever,
respectively. Hence, the sensitivity of the sensor is tuned by the
length and cross-sectional area of the sensor substrate and the
length of the piezoresistor.
All studies, and the current study, were performed under approvals Oce-

4-18 and Oce-12-18- by the Animal Care and Use Committee at the
Oceanogràfic. In addition, all studies at the Oceanogràfic were supervised
by veterinary and husbandry at staff of the Oceanografic. All procedures
involving human were approved by the KAUST Institutional Biosafety and
Bioethics Committee (IBEC). The volunteers provided signed consent to
participate in the study.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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