Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

dc.contributor.authorKim, Taesoo
dc.contributor.authorFirdaus, Yuliar
dc.contributor.authorKirmani, Ahmad R.
dc.contributor.authorLiang, Ru-Ze
dc.contributor.authorHu, Hanlin
dc.contributor.authorLiu, Mengxia
dc.contributor.authorEl Labban, Abdulrahman
dc.contributor.authorHoogland, Sjoerd
dc.contributor.authorBeaujuge, Pierre
dc.contributor.authorSargent, Edward H.
dc.contributor.authorAmassian, Aram
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentOrganic Electronics and Photovoltaics Group
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.institutionDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
dc.date.accessioned2018-05-10T08:56:43Z
dc.date.available2018-05-10T08:56:43Z
dc.date.issued2018-05-03
dc.date.published-online2018-05-03
dc.date.published-print2018-06-08
dc.description.abstractRealization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.
dc.description.sponsorshipThis work was supported by the King Abdullah University of Science and Technology (KAUST), and the Ontario Research Fund - Research Excellence program. M.L. acknowledges support from the Hatch Research Scholarship. The authors thanks E. Palmiano for support in the synthesis of quantum dots.
dc.eprint.versionPost-print
dc.identifier.citationKim T, Firdaus Y, Kirmani AR, Liang R-Z, Hu H, et al. (2018) Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering. ACS Energy Letters. Available: http://dx.doi.org/10.1021/acsenergylett.8b00460.
dc.identifier.doi10.1021/acsenergylett.8b00460
dc.identifier.issn2380-8195
dc.identifier.issn2380-8195
dc.identifier.journalACS Energy Letters
dc.identifier.urihttp://hdl.handle.net/10754/627822
dc.internal.reviewer-noteEmbargo until (dd/mm/yyyy): 03/05/2019
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acsenergylett.8b00460
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Energy Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsenergylett.8b00460.
dc.titleHybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering
dc.typeArticle
display.details.left<span><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-1121-2194&spc.sf=dc.date.issued&spc.sd=DESC">Kim, Taesoo</a> <a href="https://orcid.org/0000-0002-1121-2194" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-3299-2951&spc.sf=dc.date.issued&spc.sd=DESC">Firdaus, Yuliar</a> <a href="https://orcid.org/0000-0002-3299-2951" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-8351-3762&spc.sf=dc.date.issued&spc.sd=DESC">Kirmani, Ahmad R.</a> <a href="https://orcid.org/0000-0002-8351-3762" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-1732-6133&spc.sf=dc.date.issued&spc.sd=DESC">Liang, Ru-Ze</a> <a href="https://orcid.org/0000-0002-1732-6133" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-5617-0998&spc.sf=dc.date.issued&spc.sd=DESC">Hu, Hanlin</a> <a href="https://orcid.org/0000-0001-5617-0998" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Liu, Mengxia,equals">Liu, Mengxia</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-9891-0851&spc.sf=dc.date.issued&spc.sd=DESC">El Labban, Abdulrahman</a> <a href="https://orcid.org/0000-0001-9891-0851" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Hoogland, Sjoerd,equals">Hoogland, Sjoerd</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-2868-4494&spc.sf=dc.date.issued&spc.sd=DESC">Beaujuge, Pierre</a> <a href="https://orcid.org/0000-0003-2868-4494" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-8057-9558&spc.sf=dc.date.issued&spc.sd=DESC">Sargent, Edward H.</a> <a href="https://orcid.org/0000-0001-8057-9558" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-5734-1194&spc.sf=dc.date.issued&spc.sd=DESC">Amassian, Aram</a> <a href="https://orcid.org/0000-0002-5734-1194" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=KAUST Solar Center (KSC),equals">KAUST Solar Center (KSC)</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Material Science and Engineering Program,equals">Material Science and Engineering Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Organic Electronics and Photovoltaics Group,equals">Organic Electronics and Photovoltaics Group</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><br><h5>Online Publication Date</h5>2018-05-03<br><br><h5>Print Publication Date</h5>2018-06-08<br><br><h5>Date</h5>2018-05-03</span>
display.details.right<span><h5>Abstract</h5>Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.<br><br><h5>Citation</h5>Kim T, Firdaus Y, Kirmani AR, Liang R-Z, Hu H, et al. (2018) Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering. ACS Energy Letters. Available: http://dx.doi.org/10.1021/acsenergylett.8b00460.<br><br><h5>Acknowledgements</h5>This work was supported by the King Abdullah University of Science and Technology (KAUST), and the Ontario Research Fund - Research Excellence program. M.L. acknowledges support from the Hatch Research Scholarship. The authors thanks E. Palmiano for support in the synthesis of quantum dots.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=American Chemical Society (ACS),equals">American Chemical Society (ACS)</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=ACS Energy Letters,equals">ACS Energy Letters</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1021/acsenergylett.8b00460">10.1021/acsenergylett.8b00460</a><br><br><h5>Additional Links</h5>https://pubs.acs.org/doi/10.1021/acsenergylett.8b00460</span>
kaust.personKim, Taesoo
kaust.personFirdaus, Yuliar
kaust.personKirmani, Ahmad R.
kaust.personLiang, Ru-Ze
kaust.personHu, Hanlin
kaust.personEl Labban, Abdulrahman
kaust.personBeaujuge, Pierre
kaust.personAmassian, Aram
orcid.authorKim, Taesoo::0000-0002-1121-2194
orcid.authorFirdaus, Yuliar::0000-0002-3299-2951
orcid.authorKirmani, Ahmad R.::0000-0002-8351-3762
orcid.authorLiang, Ru-Ze::0000-0002-1732-6133
orcid.authorHu, Hanlin::0000-0001-5617-0998
orcid.authorLiu, Mengxia
orcid.authorEl Labban, Abdulrahman::0000-0001-9891-0851
orcid.authorHoogland, Sjoerd
orcid.authorBeaujuge, Pierre::0000-0003-2868-4494
orcid.authorSargent, Edward H.::0000-0001-8057-9558
orcid.authorAmassian, Aram::0000-0002-5734-1194
orcid.id0000-0002-5734-1194
orcid.id0000-0001-8057-9558
orcid.id0000-0003-2868-4494
orcid.id0000-0001-9891-0851
orcid.id0000-0001-5617-0998
orcid.id0000-0002-1732-6133
orcid.id0000-0002-8351-3762
orcid.id0000-0002-3299-2951
orcid.id0000-0002-1121-2194
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsenergylett.8b00460.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
Description:
Accepted Manuscript