Computational assessment of the effects of pre-chamber and piston geometries on the combustion characteristics of an optical pre-chamber engine

dc.contributor.authorLiu, Xinlei
dc.contributor.authorEcheverri Marquez, Manuel Alejandro
dc.contributor.authorSanal, Sangeeth
dc.contributor.authorSilva, Mickael Messias
dc.contributor.authorAlRamadan, Abdullah S.
dc.contributor.authorCenker, Emre
dc.contributor.authorSharma, Priybrat
dc.contributor.authorMagnotti, Gaetano
dc.contributor.authorTurner, James W. G.
dc.contributor.authorIm, Hong G.
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentMechanical Engineering Program
dc.contributor.institutionTransport Technologies Division, R&DC, Saudi Aramco, Dhahran, Saudi Arabia
dc.date.accepted2023-01-30
dc.date.accessioned2023-02-05T10:31:48Z
dc.date.available2023-02-05T10:31:48Z
dc.date.issued2023-02-04
dc.description.abstractPre-chamber combustion (PCC) has the potential to extend the lean-burn limit in spark-ignition engines, which can promote engine efficiency and relieve the concern of emissions of nitrogen oxides. This work assessed the effects of pre-chamber (PC) and piston geometries on the combustion characteristics of an optical methane PCC engine with both experimental and computational approaches. Five active-type PCs with different volumes and nozzle diameters (12 nozzles distributed evenly in two layers) and two pistons (bowl and flat) were tested under lean-burn conditions. Multi-cycle pressure and heat release profiles, natural flame luminosity images, and OH* chemiluminescence images were measured and employed for CFD modeling validations. The PCs with the smaller nozzle diameter yielded more intensely-reacting jets from the upper layer of nozzles compared to the other PCs, attributed to the stronger gas choke there, which dramatically affected the flow fields. A larger PC volume allowed more air–fuel mixture to be trapped within the PC whose combustion then resulted in faster pressure buildup, which, however, led to higher heat transfer loss. Compared to the bowl piston, the flat piston generated a higher heat release rate during the late combustion period owing to the relatively longer jet propagation within the squish region.
dc.description.sponsorshipThis paper is based on work supported by Saudi Aramco Research and Development Center FUELCOM program under Master Research Agreement Number 6600024505/01. FUELCOM (Fuel Combustion for Advanced Engines) is a collaborative research undertaking between Saudi Aramco and KAUST intended to address the fundamental aspects of hydrocarbon fuel combustion in engines, and develop fuel/engine design tools suitable for advanced combustion modes. The computational simulations utilized the clusters of the KAUST Supercomputing Laboratory. The authors thank Convergent Science Inc. for providing the CONVERGE license.
dc.eprint.versionPost-print
dc.identifier.citationLiu, X., Echeverri Marquez, M., Sanal, S., Silva, M., AlRamadan, A. S., Cenker, E., Sharma, P., Magnotti, G., Turner, J. W. G., & Im, H. G. (2023). Computational assessment of the effects of pre-chamber and piston geometries on the combustion characteristics of an optical pre-chamber engine. Fuel, 341, 127659. https://doi.org/10.1016/j.fuel.2023.127659
dc.identifier.doi10.1016/j.fuel.2023.127659
dc.identifier.issn0016-2361
dc.identifier.journalFuel
dc.identifier.pages127659
dc.identifier.urihttp://hdl.handle.net/10754/687485
dc.identifier.volume341
dc.publisherElsevier BV
dc.relation.urlhttps://linkinghub.elsevier.com/retrieve/pii/S0016236123002727
dc.rightsNOTICE: this is the author’s version of a work that was accepted for publication in Fuel. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Fuel, [341, , (2023-02-04)] DOI: 10.1016/j.fuel.2023.127659 . © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.embargodate2025-02-04
dc.titleComputational assessment of the effects of pre-chamber and piston geometries on the combustion characteristics of an optical pre-chamber engine
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2025-02-04<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-3763-0749&spc.sf=dc.date.issued&spc.sd=DESC">Liu, Xinlei</a> <a href="https://orcid.org/0000-0002-3763-0749" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Echeverri Marquez, Manuel Alejandro,equals">Echeverri Marquez, Manuel Alejandro</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Sanal, Sangeeth,equals">Sanal, Sangeeth</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-4981-9944&spc.sf=dc.date.issued&spc.sd=DESC">Silva, Mickael Messias</a> <a href="https://orcid.org/0000-0002-4981-9944" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=AlRamadan, Abdullah S.,equals">AlRamadan, Abdullah S.</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-2015-4851&spc.sf=dc.date.issued&spc.sd=DESC">Cenker, Emre</a> <a href="https://orcid.org/0000-0003-2015-4851" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-9649-3943&spc.sf=dc.date.issued&spc.sd=DESC">Sharma, Priybrat</a> <a href="https://orcid.org/0000-0001-9649-3943" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-1723-5258&spc.sf=dc.date.issued&spc.sd=DESC">Magnotti, Gaetano</a> <a href="https://orcid.org/0000-0002-1723-5258" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-6691-5770&spc.sf=dc.date.issued&spc.sd=DESC">Turner, James W. G.</a> <a href="https://orcid.org/0000-0001-6691-5770" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-7080-1266&spc.sf=dc.date.issued&spc.sd=DESC">Im, Hong G.</a> <a href="https://orcid.org/0000-0001-7080-1266" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Clean Combustion Research Center,equals">Clean Combustion Research Center</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Mechanical Engineering Program,equals">Mechanical Engineering Program</a><br><br><h5>Date</h5>2023-02-04</span>
display.details.right<span><h5>Abstract</h5>Pre-chamber combustion (PCC) has the potential to extend the lean-burn limit in spark-ignition engines, which can promote engine efficiency and relieve the concern of emissions of nitrogen oxides. This work assessed the effects of pre-chamber (PC) and piston geometries on the combustion characteristics of an optical methane PCC engine with both experimental and computational approaches. Five active-type PCs with different volumes and nozzle diameters (12 nozzles distributed evenly in two layers) and two pistons (bowl and flat) were tested under lean-burn conditions. Multi-cycle pressure and heat release profiles, natural flame luminosity images, and OH* chemiluminescence images were measured and employed for CFD modeling validations. The PCs with the smaller nozzle diameter yielded more intensely-reacting jets from the upper layer of nozzles compared to the other PCs, attributed to the stronger gas choke there, which dramatically affected the flow fields. A larger PC volume allowed more air–fuel mixture to be trapped within the PC whose combustion then resulted in faster pressure buildup, which, however, led to higher heat transfer loss. Compared to the bowl piston, the flat piston generated a higher heat release rate during the late combustion period owing to the relatively longer jet propagation within the squish region.<br><br><h5>Citation</h5>Liu, X., Echeverri Marquez, M., Sanal, S., Silva, M., AlRamadan, A. S., Cenker, E., Sharma, P., Magnotti, G., Turner, J. W. G., & Im, H. G. (2023). Computational assessment of the effects of pre-chamber and piston geometries on the combustion characteristics of an optical pre-chamber engine. Fuel, 341, 127659. https://doi.org/10.1016/j.fuel.2023.127659<br><br><h5>Acknowledgements</h5>This paper is based on work supported by Saudi Aramco Research and Development Center FUELCOM program under Master Research Agreement Number 6600024505/01. FUELCOM (Fuel Combustion for Advanced Engines) is a collaborative research undertaking between Saudi Aramco and KAUST intended to address the fundamental aspects of hydrocarbon fuel combustion in engines, and develop fuel/engine design tools suitable for advanced combustion modes. The computational simulations utilized the clusters of the KAUST Supercomputing Laboratory. The authors thank Convergent Science Inc. for providing the CONVERGE license.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Elsevier BV,equals">Elsevier BV</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Fuel,equals">Fuel</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1016/j.fuel.2023.127659">10.1016/j.fuel.2023.127659</a><br><br><h5>Additional Links</h5>https://linkinghub.elsevier.com/retrieve/pii/S0016236123002727</span>
kaust.acknowledged.supportUnitFUELCOM
kaust.acknowledged.supportUnitSupercomputing Laboratory
kaust.personLiu, Xinlei
kaust.personEcheverri Marquez, Manuel Alejandro
kaust.personSanal, Sangeeth
kaust.personSilva, Mickael
kaust.personSharma, Priybrat
kaust.personMagnotti, Gaetano
kaust.personTurner, James W.G.
kaust.personIm, Hong G.
orcid.authorLiu, Xinlei::0000-0002-3763-0749
orcid.authorEcheverri Marquez, Manuel Alejandro
orcid.authorSanal, Sangeeth
orcid.authorSilva, Mickael Messias::0000-0002-4981-9944
orcid.authorAlRamadan, Abdullah S.
orcid.authorCenker, Emre::0000-0003-2015-4851
orcid.authorSharma, Priybrat::0000-0001-9649-3943
orcid.authorMagnotti, Gaetano::0000-0002-1723-5258
orcid.authorTurner, James W. G.::0000-0001-6691-5770
orcid.authorIm, Hong G.::0000-0001-7080-1266
orcid.id0000-0001-7080-1266
orcid.id0000-0001-6691-5770
orcid.id0000-0002-1723-5258
orcid.id0000-0001-9649-3943
orcid.id0000-0003-2015-4851
orcid.id0000-0002-4981-9944
orcid.id0000-0002-3763-0749
Files