Stable High-Pressure Methane Dry Reforming Under Excess of CO2

dc.contributor.authorRamirez, Adrian
dc.contributor.authorLee, Kunho
dc.contributor.authorHarale, Aadesh
dc.contributor.authorGevers, Lieven
dc.contributor.authorTelalovic, Selvedin
dc.contributor.authorAl Solami, Bandar
dc.contributor.authorGascon, Jorge
dc.contributor.departmentKAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentChemical Engineering Program
dc.contributor.institutionCarbon Management Research Division, Research & Development Center, Saudi Aramco, Dhahran, 31311, Saudi Arabia
dc.date.accepted2020-08-23
dc.date.accessioned2020-09-20T12:01:49Z
dc.date.available2020-09-20T12:01:49Z
dc.date.issued2020-09-11
dc.date.submitted2020-06-24
dc.description.abstractDry reforming of methane (DRM), the conversion of carbon dioxide and methane into syngas, offers great promise for the recycling of CO2. However, fast catalyst deactivation, especially at the industrially required high pressure, still hampers this process. Here we present a comprehensive study of DRM operation at high pressure (7–28 bars). Our results demonstrate that, under equimolar CH4 : CO2 mixtures, coke formation is unavoidable at high pressures for all catalysts under study. However, under substoichiometric CH4 : CO2 ratios (1 : 3), a stable high pressure operation can be achieved for most catalysts with no sign of deactivation for at least 60 hours at 14 bars, 800 °C and 7500 h−1. In addition to the enhanced stability, under these conditions, the amount of CO2 abated per mol of CH4 fed increases by a 50 %.
dc.description.sponsorshipFunding for this work was provided by Saudi Aramco and King Abdullah University of Science and Technology (KAUST).
dc.eprint.versionPost-print
dc.identifier.citationGascon, J., Ramirez, A., Lee, K., Harale, A., Gevers, L., Telalovic, S., & Al Solami, B. (2020). Stable High-Pressure Methane Dry Reforming Under Excess of CO2. ChemCatChem. doi:10.1002/cctc.202001049
dc.identifier.doi10.1002/cctc.202001049
dc.identifier.doi10.1002/cctc.202001721
dc.identifier.eid2-s2.0-85090787837
dc.identifier.issn1867-3899
dc.identifier.issn1867-3880
dc.identifier.journalChemCatChem
dc.identifier.urihttp://hdl.handle.net/10754/665240
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.202001049
dc.rightsArchived with thanks to ChemCatChem
dc.rights.embargodate2021-08-24
dc.titleStable High-Pressure Methane Dry Reforming Under Excess of CO2
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2021-08-24<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Ramirez, Adrian,equals">Ramirez, Adrian</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Lee, Kunho,equals">Lee, Kunho</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Harale, Aadesh,equals">Harale, Aadesh</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Gevers, Lieven,equals">Gevers, Lieven</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Telalovic, Selvedin,equals">Telalovic, Selvedin</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Al Solami, Bandar,equals">Al Solami, Bandar</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-7558-7123&spc.sf=dc.date.issued&spc.sd=DESC">Gascon, Jorge</a> <a href="https://orcid.org/0000-0001-7558-7123" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia,equals">KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=KAUST Catalysis Center (KCC),equals">KAUST Catalysis Center (KCC)</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Chemical Engineering Program,equals">Chemical Engineering Program</a><br><br><h5>Date</h5>2020-09-11<br><br><h5>Submitted Date</h5>2020-06-24</span>
display.details.right<span><h5>Abstract</h5>Dry reforming of methane (DRM), the conversion of carbon dioxide and methane into syngas, offers great promise for the recycling of CO2. However, fast catalyst deactivation, especially at the industrially required high pressure, still hampers this process. Here we present a comprehensive study of DRM operation at high pressure (7–28 bars). Our results demonstrate that, under equimolar CH4 : CO2 mixtures, coke formation is unavoidable at high pressures for all catalysts under study. However, under substoichiometric CH4 : CO2 ratios (1 : 3), a stable high pressure operation can be achieved for most catalysts with no sign of deactivation for at least 60 hours at 14 bars, 800 °C and 7500 h−1. In addition to the enhanced stability, under these conditions, the amount of CO2 abated per mol of CH4 fed increases by a 50 %.<br><br><h5>Citation</h5>Gascon, J., Ramirez, A., Lee, K., Harale, A., Gevers, L., Telalovic, S., & Al Solami, B. (2020). Stable High-Pressure Methane Dry Reforming Under Excess of CO2. ChemCatChem. doi:10.1002/cctc.202001049<br><br><h5>Acknowledgements</h5>Funding for this work was provided by Saudi Aramco and King Abdullah University of Science and Technology (KAUST).<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Wiley,equals">Wiley</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=ChemCatChem,equals">ChemCatChem</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1002/cctc.202001049">10.1002/cctc.202001049</a><br><a href="https://doi.org/10.1002/cctc.202001721">10.1002/cctc.202001721</a><br><br><h5>Additional Links</h5>https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.202001049</span>
kaust.personRamirez, Adrian
kaust.personGevers, Lieven
kaust.personTelalovic, Selvedin
kaust.personGascon, Jorge
orcid.id0000-0001-7558-7123
refterms.dateFOA2020-09-21T07:16:49Z
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CCTC_202001049_revised.pdf
Size:
734.34 KB
Format:
Adobe Portable Document Format
Description:
Accepted manuscript