Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets

dc.contributor.authorDakhchoune, Mostapha
dc.contributor.authorVillalobos, Luis Francisco
dc.contributor.authorSemino, Rocio
dc.contributor.authorLiu, L. M.
dc.contributor.authorRezaei, Mojtaba
dc.contributor.authorSchouwink, Pascal
dc.contributor.authorAvalos, Claudia Esther
dc.contributor.authorBaade, Paul
dc.contributor.authorWood, Vanessa
dc.contributor.authorHan, Yu
dc.contributor.authorCeriotti, Michele
dc.contributor.authorAgrawal, Kumar Varoon
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentChemical Science Program
dc.contributor.departmentNanostructured Functional Materials (NFM) laboratory
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.institutionLaboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.
dc.contributor.institutionLaboratory of Computational Science and Modelling (COSMO), EPFL, Lausanne, Switzerland.
dc.contributor.institutionICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
dc.contributor.institutionInstitut des Sciences et Ingénierie Chimiques (ISIC), EPFL, Lausanne, Switzerland.
dc.contributor.institutionDepartment of Information Technology and Electrical Engineering, ETH, Zürich, Switzerland.
dc.date.accepted2020-09-03
dc.date.accessioned2020-10-06T10:32:43Z
dc.date.available2020-10-06T10:32:43Z
dc.date.issued2020-10-05
dc.date.published-online2020-10-05
dc.date.published-print2021-03
dc.date.submitted2019-11-04
dc.description.abstractThe synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250–300 °C make these membranes promising for precombustion carbon capture.
dc.description.sponsorshipWe thank our host institution, EPFL, for generous support. This work was primarily funded by the Swiss Competence Center for Energy Research: Efficiency of Industrial Processes (SCCER-EIP). A part of this work was funded by the Swiss National Science Foundation (Assistant Professor Energy Grant, grant no. PYAPP2-173645). The computational aspects of this work were supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s887. We acknowledge E. Oveisi for the helpful discussions on electron microscopy.
dc.eprint.versionPost-print
dc.identifier.citationDakhchoune, M., Villalobos, L. F., Semino, R., Liu, L., Rezaei, M., Schouwink, P., … Agrawal, K. V. (2020). Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nature Materials. doi:10.1038/s41563-020-00822-2
dc.identifier.doi10.1038/s41563-020-00822-2
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.journalNature Materials
dc.identifier.urihttp://hdl.handle.net/10754/665455
dc.publisherSpringer Nature
dc.relation.urlhttp://www.nature.com/articles/s41563-020-00822-2
dc.rightsArchived with thanks to Nature Materials
dc.rights.embargodate2021-04-05
dc.titleGas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2021-04-05<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Dakhchoune, Mostapha,equals">Dakhchoune, Mostapha</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-0745-4246&spc.sf=dc.date.issued&spc.sd=DESC">Villalobos, Luis Francisco</a> <a href="https://orcid.org/0000-0002-0745-4246" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-3937-7414&spc.sf=dc.date.issued&spc.sd=DESC">Semino, Rocio</a> <a href="https://orcid.org/0000-0003-3937-7414" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-3273-9884&spc.sf=dc.date.issued&spc.sd=DESC">Liu, L. M.</a> <a href="https://orcid.org/0000-0002-3273-9884" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-2183-9377&spc.sf=dc.date.issued&spc.sd=DESC">Rezaei, Mojtaba</a> <a href="https://orcid.org/0000-0003-2183-9377" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Schouwink, Pascal,equals">Schouwink, Pascal</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-6412-0237&spc.sf=dc.date.issued&spc.sd=DESC">Avalos, Claudia Esther</a> <a href="https://orcid.org/0000-0001-6412-0237" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Baade, Paul,equals">Baade, Paul</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-6435-0227&spc.sf=dc.date.issued&spc.sd=DESC">Wood, Vanessa</a> <a href="https://orcid.org/0000-0001-6435-0227" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-1462-1118&spc.sf=dc.date.issued&spc.sd=DESC">Han, Yu</a> <a href="https://orcid.org/0000-0003-1462-1118" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-2571-2832&spc.sf=dc.date.issued&spc.sd=DESC">Ceriotti, Michele</a> <a href="https://orcid.org/0000-0003-2571-2832" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-5170-6412&spc.sf=dc.date.issued&spc.sd=DESC">Agrawal, Kumar Varoon</a> <a href="https://orcid.org/0000-0002-5170-6412" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Advanced Membranes and Porous Materials Research Center,equals">Advanced Membranes and Porous Materials Research Center</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Chemical Science Program,equals">Chemical Science Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Nanostructured Functional Materials (NFM) laboratory,equals">Nanostructured Functional Materials (NFM) laboratory</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><br><h5>Online Publication Date</h5>2020-10-05<br><br><h5>Print Publication Date</h5>2021-03<br><br><h5>Date</h5>2020-10-05<br><br><h5>Submitted Date</h5>2019-11-04</span>
display.details.right<span><h5>Abstract</h5>The synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250–300 °C make these membranes promising for precombustion carbon capture.<br><br><h5>Citation</h5>Dakhchoune, M., Villalobos, L. F., Semino, R., Liu, L., Rezaei, M., Schouwink, P., … Agrawal, K. V. (2020). Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nature Materials. doi:10.1038/s41563-020-00822-2<br><br><h5>Acknowledgements</h5>We thank our host institution, EPFL, for generous support. This work was primarily funded by the Swiss Competence Center for Energy Research: Efficiency of Industrial Processes (SCCER-EIP). A part of this work was funded by the Swiss National Science Foundation (Assistant Professor Energy Grant, grant no. PYAPP2-173645). The computational aspects of this work were supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s887. We acknowledge E. Oveisi for the helpful discussions on electron microscopy.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Springer Nature,equals">Springer Nature</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Nature Materials,equals">Nature Materials</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1038/s41563-020-00822-2">10.1038/s41563-020-00822-2</a><br><br><h5>Additional Links</h5>http://www.nature.com/articles/s41563-020-00822-2</span>
kaust.personLiu, Lingmei
kaust.personHan, Yu
orcid.authorDakhchoune, Mostapha
orcid.authorVillalobos, Luis Francisco::0000-0002-0745-4246
orcid.authorSemino, Rocio::0000-0003-3937-7414
orcid.authorLiu, L. M.::0000-0002-3273-9884
orcid.authorRezaei, Mojtaba::0000-0003-2183-9377
orcid.authorSchouwink, Pascal
orcid.authorAvalos, Claudia Esther::0000-0001-6412-0237
orcid.authorBaade, Paul
orcid.authorWood, Vanessa::0000-0001-6435-0227
orcid.authorHan, Yu::0000-0003-1462-1118
orcid.authorCeriotti, Michele::0000-0003-2571-2832
orcid.authorAgrawal, Kumar Varoon::0000-0002-5170-6412
orcid.id0000-0002-5170-6412
orcid.id0000-0003-2571-2832
orcid.id0000-0003-1462-1118
orcid.id0000-0001-6435-0227
orcid.id0000-0001-6412-0237
orcid.id0000-0003-2183-9377
orcid.id0000-0002-3273-9884
orcid.id0000-0003-3937-7414
orcid.id0000-0002-0745-4246
Files