A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

Type
Article

Authors
Zhong, Hua
Wang, Xiao-Ping
Sun, Shuyu

KAUST Department
Computational Transport Phenomena Lab
Earth Science and Engineering Program
Physical Science and Engineering (PSE) Division

Online Publication Date
2016-09-26

Print Publication Date
2016-09

Date
2016-09-26

Abstract
We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions. Stick-slip behavior and con-tact angle hysteresis are observed. Moreover, we also study the relationship between the effective advancing/receding angle and the two intrinsic angles of the surface patterns. By increasing the volume of droplet gradually, we find that the advancing contact line tends gradually to an equiangular octagon with the length ratio of the two adjacent sides equal to a fixed value that depends on the geometry of the pattern.

Citation
Zhong H, Wang X-P, Sun S (2016) A numerical study of three-dimensional droplets spreading on chemically patterned surfaces. Discrete and Continuous Dynamical Systems - Series B 21: 2905–2926. Available: http://dx.doi.org/10.3934/dcdsb.2016079.

Publisher
American Institute of Mathematical Sciences (AIMS)

Journal
Discrete and Continuous Dynamical Systems - Series B

DOI
10.3934/dcdsb.2016079

Permanent link to this record