Phytoplankton Biomass and the Hydrodynamic Regime in NEOM, Red Sea

Abstract
NEOM (short for Neo-Mustaqbal) is a $500 billion coastal city megaproject, currently under construction in the northwestern part of the Red Sea, off the coast of Tabuk province in Saudi Arabia, and its success will rely on the preservation of biodiverse marine ecosystems. Monitoring the variability of ecological indicators, such as phytoplankton, in relation to regional environmental conditions, is the foundation for such a goal. We provide a detailed description of the phytoplankton seasonal cycle of surface waters surrounding NEOM using satellite-derived chlorophyll-a (Chl-a) observations, based on a regionally-tuned product of the European Space Agency’s Ocean Colour Climate Change Initiative, at 1 km resolution, from 1997 to 2018. The analysis is also supported with in situ cruise datasets and outputs of a state-of-the-art high-resolution hydrodynamic model. The open waters of NEOM follow the oligotrophic character of the Northern Red Sea (NRS), with a peak during late winter and a minimum during late summer. Coral reef-bound regions, such as Sindala and Sharma, are characterised by higher Chl-a concentrations that peak during late summer. Most of the open waters around NEOM are influenced by the general cyclonic circulation of the NRS and local circulation features, while shallow reef-bound regions are more isolated. Our analysis provides the first description of the phytoplankton seasonality and the oceanographic conditions in NEOM, which may support the development of a regional marine conservation strategy.

Citation
Papagiannopoulos, N., Raitsos, D., Krokos, G., Gittings, J., Brewin, R., Papadopoulos, V., … Hoteit, I. (2021). Phytoplankton Biomass and the Hydrodynamic Regime in NEOM, Red Sea. Remote Sensing, 13(11), 2082. doi:10.3390/rs13112082

Acknowledgements
The study was partly supported by the Center of Excellence NEOM at King Abdullah University of Science and Technology (KAUST) and by NEOM through Beacon Development Company (BDC) at KAUST. The research made use of the Supercomputing Laboratory resources at KAUST.
The authors thank the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) and the European Space Agency (ESA) for supplying over 20 years of high-resolution satellite-derived ocean colour data for this study. We also thank all the members and the crew of the R/V Thuwal and R/V Dream Island, who participated in the cruises that provided the in situ data.

Publisher
MDPI AG

Journal
Remote Sensing

DOI
10.3390/rs13112082

Additional Links
https://www.mdpi.com/2072-4292/13/11/2082

Permanent link to this record