Facile synthesis of triazine-triphenylamine-based microporous covalent polymer adsorbent for flue gas CO2 capture

Abstract
The sustainable capture and sequestration of CO2 from flue gas emission is an important and unavoidable challenge to control greenhouse gas release and climate change. In this report, we describe a triazine-triphenylamine-based microporous covalent organic polymer under mild synthetic conditions. 13C and 15N solid-state NMR and FTIR analyses confirm the linkage of the triazine and triphenylamine components in the porous polymer skeleton. The material is composed of spherical particles 1.0 to 2.0 μm in size and possesses a high surface area (1104 m2/g). The material exhibits superb chemical robustness under acidic and basic conditions and high thermal stability. Single-component gas adsorption exhibits an enhanced CO2 uptake of 3.12 mmol/g coupled with high sorption selectivity for CO2/N2 of 64 at 273 K and 1 bar, whereas the binary gas mixture breakthrough study using a model flue gas composition at 298 K shows a high CO2/N2 selectivity of 58. The enhanced performance is attributed to the high Lewis basicity of the framework, as it favors the interaction with CO2.

Citation
Das SK, Wang X, Lai Z (2017) Facile synthesis of triazine-triphenylamine-based microporous covalent polymer adsorbent for flue gas CO 2 capture. Microporous and Mesoporous Materials. Available: http://dx.doi.org/10.1016/j.micromeso.2017.07.038.

Acknowledgements
We gratefully acknowledge financial support from the King Abdullah University of Science and Technology (KAUST), competitive research grant URF/1/1378 and baseline fundBAS/1/1375.

Publisher
Elsevier BV

Journal
Microporous and Mesoporous Materials

DOI
10.1016/j.micromeso.2017.07.038

Additional Links
http://www.sciencedirect.com/science/article/pii/S1387181117305103

Permanent link to this record