Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening

dc.contributor.authorLiu, Yang
dc.contributor.authorChen, Zhijie
dc.contributor.authorQiu, Wulin
dc.contributor.authorLiu, Gongping
dc.contributor.authorEddaoudi, Mohamed
dc.contributor.authorKoros, William J.
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentBiological and Environmental Science and Engineering (BESE) Division
dc.contributor.departmentChemical Science Program
dc.contributor.departmentFunctional Materials Design, Discovery and Development (FMD3)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.institutionSchool of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30032, USA.
dc.date.accepted2021-02-12
dc.date.accessioned2021-02-25T06:34:01Z
dc.date.available2021-02-25T06:34:01Z
dc.date.issued2021-02-23
dc.date.published-online2021-02-23
dc.date.published-print2021-06
dc.date.submitted2020-12-30
dc.description.abstractMembranes are attractive for upgrading natural gas; however, the gas permeation processes through membranes are challenging to control. The coexistence of condensable H2S and CO2 typically causes membrane performance to decline under practical feed conditions, due to uncontrolled penetrate competition and undesired plasticization of the membrane polymer matrix. In this paper, we report a strategy to successfully transform these apparent negatives, i.e. plasticization and penetrate competition, into positives that boost the natural gas sweetening efficiency of membranes greatly. Our strategy is to disperse engineered metal organic framework (MOF) fillers into designed polymer matrices to form hybrid membranes, which promote the permeation of both H2S and CO2 but hinder CH4 permeation. Moreover, uniformly dispersed MOF fillers also significantly alter the plasticization responses of polymer matrices, enabling controlled plasticization benefits. Ultimately, we illustrate a highly tunable MOF-polymer hybrid membrane platform that meets the diverse natural gas sweetening requirements under aggressive conditions.
dc.description.sponsorshipThe research supported in this publication was supported by DOE BES grant (DE-FG02-04ER15510) and KAUST CRG Research Grant URF/1/222–01. Y.L., W.Q., G.L., and W.J.K. acknowledge the support by the Roberto C. Goizueta Chair fund and the Specialty Separations Center at Georgia Institute of Technology for assistance in equipment resource funds.
dc.eprint.versionPost-print
dc.identifier.citationLiu, Y., Chen, Z., Qiu, W., Liu, G., Eddaoudi, M., & Koros, W. J. (2021). Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening. Journal of Membrane Science, 119201. doi:10.1016/j.memsci.2021.119201
dc.identifier.doi10.1016/j.memsci.2021.119201
dc.identifier.issn0376-7388
dc.identifier.journalJournal of Membrane Science
dc.identifier.pages119201
dc.identifier.urihttp://hdl.handle.net/10754/667668
dc.publisherElsevier BV
dc.relation.urlhttps://linkinghub.elsevier.com/retrieve/pii/S0376738821001514
dc.rightsNOTICE: this is the author’s version of a work that was accepted for publication in Journal of Membrane Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Membrane Science, [, , (2021-02)] DOI: 10.1016/j.memsci.2021.119201 . © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.embargodate2023-02-01
dc.titlePenetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2023-02-01<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-4313-0932&spc.sf=dc.date.issued&spc.sd=DESC">Liu, Yang</a> <a href="https://orcid.org/0000-0003-4313-0932" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-9232-7382&spc.sf=dc.date.issued&spc.sd=DESC">Chen, Zhijie</a> <a href="https://orcid.org/0000-0001-9232-7382" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-7797-5020&spc.sf=dc.date.issued&spc.sd=DESC">Qiu, Wulin</a> <a href="https://orcid.org/0000-0002-7797-5020" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Liu, Gongping,equals">Liu, Gongping</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-1916-9837&spc.sf=dc.date.issued&spc.sd=DESC">Eddaoudi, Mohamed</a> <a href="https://orcid.org/0000-0003-1916-9837" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Koros, William J.,equals">Koros, William J.</a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Advanced Membranes and Porous Materials Research Center,equals">Advanced Membranes and Porous Materials Research Center</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Biological and Environmental Science and Engineering (BESE) Division,equals">Biological and Environmental Science and Engineering (BESE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Chemical Science Program,equals">Chemical Science Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Functional Materials Design, Discovery and Development (FMD3),equals">Functional Materials Design, Discovery and Development (FMD3)</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><br><h5>KAUST Grant Number</h5>URF/1/222–01<br><br><h5>Online Publication Date</h5>2021-02-23<br><br><h5>Print Publication Date</h5>2021-06<br><br><h5>Date</h5>2021-02-23<br><br><h5>Submitted Date</h5>2020-12-30</span>
display.details.right<span><h5>Abstract</h5>Membranes are attractive for upgrading natural gas; however, the gas permeation processes through membranes are challenging to control. The coexistence of condensable H2S and CO2 typically causes membrane performance to decline under practical feed conditions, due to uncontrolled penetrate competition and undesired plasticization of the membrane polymer matrix. In this paper, we report a strategy to successfully transform these apparent negatives, i.e. plasticization and penetrate competition, into positives that boost the natural gas sweetening efficiency of membranes greatly. Our strategy is to disperse engineered metal organic framework (MOF) fillers into designed polymer matrices to form hybrid membranes, which promote the permeation of both H2S and CO2 but hinder CH4 permeation. Moreover, uniformly dispersed MOF fillers also significantly alter the plasticization responses of polymer matrices, enabling controlled plasticization benefits. Ultimately, we illustrate a highly tunable MOF-polymer hybrid membrane platform that meets the diverse natural gas sweetening requirements under aggressive conditions.<br><br><h5>Citation</h5>Liu, Y., Chen, Z., Qiu, W., Liu, G., Eddaoudi, M., & Koros, W. J. (2021). Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening. Journal of Membrane Science, 119201. doi:10.1016/j.memsci.2021.119201<br><br><h5>Acknowledgements</h5>The research supported in this publication was supported by DOE BES grant (DE-FG02-04ER15510) and KAUST CRG Research Grant URF/1/222–01. Y.L., W.Q., G.L., and W.J.K. acknowledge the support by the Roberto C. Goizueta Chair fund and the Specialty Separations Center at Georgia Institute of Technology for assistance in equipment resource funds.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Elsevier BV,equals">Elsevier BV</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Journal of Membrane Science,equals">Journal of Membrane Science</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1016/j.memsci.2021.119201">10.1016/j.memsci.2021.119201</a><br><br><h5>Additional Links</h5>https://linkinghub.elsevier.com/retrieve/pii/S0376738821001514</span>
kaust.acknowledged.supportUnitCRG
kaust.grant.numberURF/1/222–01
kaust.personEddaoudi, Mohamed
orcid.authorLiu, Yang::0000-0003-4313-0932
orcid.authorChen, Zhijie::0000-0001-9232-7382
orcid.authorQiu, Wulin::0000-0002-7797-5020
orcid.authorLiu, Gongping
orcid.authorEddaoudi, Mohamed::0000-0003-1916-9837
orcid.authorKoros, William J.
orcid.id0000-0003-1916-9837
orcid.id0000-0002-7797-5020
orcid.id0000-0001-9232-7382
orcid.id0000-0003-4313-0932
refterms.dateFOA2021-02-25T06:35:51Z
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Permanent_1-s2.0-S0376738821001514-main.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:
Accepted Article