An Explicit Marching-on-in-time Scheme for Solving the Kirchhoff Integral Equation

Type
Conference Paper

Authors
Chen, Rui
Sayed, Sadeed B
Bagci, Hakan

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program

Online Publication Date
2019-01-24

Print Publication Date
2018-07

Date
2019-01-24

Abstract
An explicit marching-on-in-time scheme for solving the Kirchhoff integral equation enforced on an acoustically rigid scatterer is proposed. The unknown velocity potential introduced on the surface of scatterer is expanded using unit pulse functions in space and Lagrange polynomial interpolation functions in time. The resulting system is cast in the form of an ordinary differential equation and then integrated numerically in time using a predictor-corrector scheme to obtain the unknown expansion coefficients. Numerical results demonstrate that the time step size required by the proposed explicit scheme to ensure an accurate and stable solution is as large as that used by its implicit counterpart.

Citation
Chen R, Sayed SB, Bagci H (2018) An Explicit Marching-on-in-time Scheme for Solving the Kirchhoff Integral Equation. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Available: http://dx.doi.org/10.1109/APUSNCURSINRSM.2018.8608706.

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Journal
2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting

Conference/Event Name
2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018

DOI
10.1109/APUSNCURSINRSM.2018.8608706

Additional Links
https://ieeexplore.ieee.org/document/8608706

Permanent link to this record