GDPP: Learning Diverse Generations using Determinantal Point Processes

Generative models have proven to be an outstanding tool for representing high-dimensional probability distributions and generating realistic looking images. An essential characteristic of generative models is their ability to produce multimodal outputs. However, while training, they are often susceptible to mode collapse, that is models are limited in mapping input noise to only a few modes of the true data distribution. In this work, we draw inspiration from Determinantal Point Process (DPP) to propose an unsupervised penalty loss that alleviates mode collapse while producing higher quality samples. DPP is an elegant probabilistic measure used to model negative correlations within a subset and hence quantify its diversity. We use DPP kernel to model the diversity in real data as well as in synthetic data. Then, we devise an objective term that encourages generator to synthesize data with a similar diversity to real data. In contrast to previous state-of-the-art generative models that tend to use additional trainable parameters or complex training paradigms, our method docs not change the original training scheme. Embedded in an adversarial training and variational autoencoder, our Generative DPP approach shows a consistent resistance to mode-collapse on a wide-variety of synthetic data and natural image datasets including MNIST, CIFAR10, and CelcbA, while outperforming state-of-the-art methods for data-efficiency, generation quality, and convergence-time whereas being 5.8x faster than its closest competitor.

International Conference on Machine Learning 2019


Conference/Event Name
36th International Conference on Machine Learning, ICML 2019


Additional Links

Is Supplemented By:
  • [Software]
    Title: M-Elfeki/GDPP: Generator loss to reduce mode-collapse and to improve the generated samples quality.. Publication Date: 2018-11-30. github: M-Elfeki/GDPP Handle: 10754/667580

Permanent link to this record