SiSn diodes: Theoretical analysis and experimental verification

dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
dc.contributor.authorHussain, Aftab M.
dc.contributor.authorWehbe, Nimer
dc.contributor.authorHussain, Muhammad Mustafa
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentImaging and Characterization Core Lab
dc.contributor.departmentIntegrated Nanotechnology Lab
dc.contributor.departmentSurface Science
dc.date.accessioned2015-09-03T12:43:21Z
dc.date.available2015-09-03T12:43:21Z
dc.date.issued2015-08-24
dc.description.abstractWe report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn. We report a reduction of 0.1 V in the average built-in potential, and a reduction of 0.2 V in the average reverse bias breakdown voltage, as measured across the substrate. These reductions indicate that the band gap of the silicon lattice has been reduced due to the incorporation of Sn, as expected from the theoretical analysis. We report the experimentally calculated band gap of SiSn to be 1.11 ± 0.09 eV. This low-cost, CMOS compatible, and scalable process offers a unique opportunity to tune the band gap of silicon for specific applications.
dc.eprint.versionPublisher's Version/PDF
dc.identifier.citationSiSn diodes: Theoretical analysis and experimental verification 2015, 107 (8):082111 Applied Physics Letters
dc.identifier.doi10.1063/1.4929801
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.journalApplied Physics Letters
dc.identifier.urihttp://hdl.handle.net/10754/576462
dc.language.isoen
dc.publisherAIP Publishing
dc.relation.urlhttp://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4929801
dc.rightsArchived with thanks to Applied Physics Letters
dc.titleSiSn diodes: Theoretical analysis and experimental verification
dc.typeArticle
display.details.left<span><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-9516-9428&spc.sf=dc.date.issued&spc.sd=DESC">Hussain, Aftab M.</a> <a href="https://orcid.org/0000-0002-9516-9428" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Wehbe, Nimer,equals">Wehbe, Nimer</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-3279-0441&spc.sf=dc.date.issued&spc.sd=DESC">Hussain, Muhammad Mustafa</a> <a href="https://orcid.org/0000-0003-3279-0441" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division,equals">Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Electrical Engineering Program,equals">Electrical Engineering Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Imaging and Characterization Core Lab,equals">Imaging and Characterization Core Lab</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Integrated Nanotechnology Lab,equals">Integrated Nanotechnology Lab</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Surface Science,equals">Surface Science</a><br><br><h5>Date</h5>2015-08-24</span>
display.details.right<span><h5>Abstract</h5>We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn. We report a reduction of 0.1 V in the average built-in potential, and a reduction of 0.2 V in the average reverse bias breakdown voltage, as measured across the substrate. These reductions indicate that the band gap of the silicon lattice has been reduced due to the incorporation of Sn, as expected from the theoretical analysis. We report the experimentally calculated band gap of SiSn to be 1.11 ± 0.09 eV. This low-cost, CMOS compatible, and scalable process offers a unique opportunity to tune the band gap of silicon for specific applications.<br><br><h5>Citation</h5>SiSn diodes: Theoretical analysis and experimental verification 2015, 107 (8):082111 Applied Physics Letters<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=AIP Publishing,equals">AIP Publishing</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Applied Physics Letters,equals">Applied Physics Letters</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1063/1.4929801">10.1063/1.4929801</a><br><br><h5>Additional Links</h5>http://scitation.aip.org/content/aip/journal/apl/107/8/10.1063/1.4929801</span>
kaust.personHussain, Aftab M.
kaust.personHussain, Muhammad Mustafa
kaust.personWehbe, Nimer
orcid.authorHussain, Aftab M.::0000-0002-9516-9428
orcid.authorWehbe, Nimer
orcid.authorHussain, Muhammad Mustafa::0000-0003-3279-0441
orcid.id0000-0003-3279-0441
orcid.id0000-0002-9516-9428
refterms.dateFOA2018-06-14T08:36:00Z
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.4929801.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Description:
Main article