Constrained multi-degree reduction with respect to Jacobi norms

dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
dc.contributor.authorAit-Haddou, Rachid
dc.contributor.authorBarton, Michael
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentNumerical Porous Media SRI Center (NumPor)
dc.contributor.departmentVisual Computing Center (VCC)
dc.date.accessioned2016-01-04T06:06:58Z
dc.date.available2016-01-04T06:06:58Z
dc.date.issued2015-12-31
dc.date.published-online2015-12-31
dc.date.published-print2016-02
dc.description.abstractWe show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.
dc.eprint.versionPost-print
dc.identifier.citationConstrained multi-degree reduction with respect to Jacobi norms 2015 Computer Aided Geometric Design
dc.identifier.doi10.1016/j.cagd.2015.12.003
dc.identifier.issn01678396
dc.identifier.journalComputer Aided Geometric Design
dc.identifier.urihttp://hdl.handle.net/10754/592755
dc.language.isoen
dc.publisherElsevier BV
dc.relation.urlhttp://linkinghub.elsevier.com/retrieve/pii/S0167839615001429
dc.rightsNOTICE: this is the author’s version of a work that was accepted for publication in Computer Aided Geometric Design. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Aided Geometric Design, 31 December 2015. DOI: 10.1016/j.cagd.2015.12.003
dc.subjectDegree reduction
dc.subjectWeighted least squares
dc.subjectJacobi norm
dc.subjectHahn orthogonal polynomials
dc.titleConstrained multi-degree reduction with respect to Jacobi norms
dc.typeArticle
display.details.left<span><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Ait-Haddou, Rachid,equals">Ait-Haddou, Rachid</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-1843-251X&spc.sf=dc.date.issued&spc.sd=DESC">Barton, Michael</a> <a href="https://orcid.org/0000-0002-1843-251X" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division,equals">Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Numerical Porous Media SRI Center (NumPor),equals">Numerical Porous Media SRI Center (NumPor)</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Visual Computing Center (VCC),equals">Visual Computing Center (VCC)</a><br><br><h5>Online Publication Date</h5>2015-12-31<br><br><h5>Print Publication Date</h5>2016-02<br><br><h5>Date</h5>2015-12-31</span>
display.details.right<span><h5>Abstract</h5>We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.<br><br><h5>Citation</h5>Constrained multi-degree reduction with respect to Jacobi norms 2015 Computer Aided Geometric Design<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Elsevier BV,equals">Elsevier BV</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Computer Aided Geometric Design,equals">Computer Aided Geometric Design</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1016/j.cagd.2015.12.003">10.1016/j.cagd.2015.12.003</a><br><br><h5>Additional Links</h5>http://linkinghub.elsevier.com/retrieve/pii/S0167839615001429</span>
kaust.personAit-Haddou, Rachid
kaust.personBarton, Michael
orcid.authorAit-Haddou, Rachid
orcid.authorBarton, Michael::0000-0002-1843-251X
orcid.id0000-0002-1843-251X
refterms.dateFOA2017-12-31T00:00:00Z
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0167839615001429-main.pdf
Size:
553.71 KB
Format:
Adobe Portable Document Format
Description:
Accepted Manuscript