A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics

dc.contributor.authorKim, Younghoon
dc.contributor.authorChe, Fanglin
dc.contributor.authorJo, Jea Woong
dc.contributor.authorChoi, Jongmin
dc.contributor.authorGarcía de Arquer, F. Pelayo
dc.contributor.authorVoznyy, Oleksandr
dc.contributor.authorSun, Bin
dc.contributor.authorKim, Junghwan
dc.contributor.authorChoi, Min-Jae
dc.contributor.authorQuintero-Bermudez, Rafael
dc.contributor.authorFan, Fengjia
dc.contributor.authorTan, Chih Shan
dc.contributor.authorBladt, Eva
dc.contributor.authorWalters, Grant
dc.contributor.authorProppe, Andrew H.
dc.contributor.authorZou, Chengqin
dc.contributor.authorYuan, Haifeng
dc.contributor.authorBals, Sara
dc.contributor.authorHofkens, Johan
dc.contributor.authorRoeffaers, Maarten B. J.
dc.contributor.authorHoogland, Sjoerd
dc.contributor.authorSargent, E.
dc.contributor.institutionDepartment of Electrical and Computer EngineeringUniversity of Toronto 10 King's College Road Toronto Ontario M5S 3G4 Canada
dc.contributor.institutionElectron Microscopy for Materials Science (EMAT)University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium
dc.contributor.institutionDepartement of ChemistryKU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
dc.contributor.institutionCenter for Surface Chemistry and CatalysisFaculty of Bioscience EngineeringKU Leuven 3001 Heverlee Belgium
dc.date.accessioned2021-03-11T10:43:58Z
dc.date.available2021-03-11T10:43:58Z
dc.date.issued2019-03-12
dc.description.abstractColloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (≈47 meV) and Urbach tail (≈29 meV). This approach provides a ≈50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a ≈70% external quantum efficiency at their excitonic peak.
dc.description.sponsorshipY.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research.
dc.eprint.versionPost-print
dc.identifier.citationKim, Y., Che, F., Jo, J. W., Choi, J., García de Arquer, F. P., Voznyy, O., … Sargent, E. H. (2019). A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 31(17), 1805580. doi:10.1002/adma.201805580
dc.identifier.doi10.1002/adma.201805580
dc.identifier.eid2-s2.0-85062789296
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.issue17
dc.identifier.journalAdvanced Materials
dc.identifier.pages1805580
dc.identifier.urihttp://hdl.handle.net/10754/668082
dc.identifier.volume31
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805580
dc.rightsArchived with thanks to Advanced Materials
dc.rights.embargodate2020-03-12
dc.titleA Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2020-03-12<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Kim, Younghoon,equals">Kim, Younghoon</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Che, Fanglin,equals">Che, Fanglin</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Jo, Jea Woong,equals">Jo, Jea Woong</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Choi, Jongmin,equals">Choi, Jongmin</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=García de Arquer, F. Pelayo,equals">García de Arquer, F. Pelayo</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Voznyy, Oleksandr,equals">Voznyy, Oleksandr</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Sun, Bin,equals">Sun, Bin</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Kim, Junghwan,equals">Kim, Junghwan</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Choi, Min-Jae,equals">Choi, Min-Jae</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Quintero-Bermudez, Rafael,equals">Quintero-Bermudez, Rafael</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Fan, Fengjia,equals">Fan, Fengjia</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Tan, Chih Shan,equals">Tan, Chih Shan</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Bladt, Eva,equals">Bladt, Eva</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Walters, Grant,equals">Walters, Grant</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Proppe, Andrew H.,equals">Proppe, Andrew H.</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Zou, Chengqin,equals">Zou, Chengqin</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Yuan, Haifeng,equals">Yuan, Haifeng</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Bals, Sara,equals">Bals, Sara</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Hofkens, Johan,equals">Hofkens, Johan</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Roeffaers, Maarten B. J.,equals">Roeffaers, Maarten B. J.</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Hoogland, Sjoerd,equals">Hoogland, Sjoerd</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-0396-6495&spc.sf=dc.date.issued&spc.sd=DESC">Sargent, E.</a> <a href="https://orcid.org/0000-0003-0396-6495" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Grant Number</h5>OSR-2017-CPF-3325<br><br><h5>Date</h5>2019-03-12</span>
display.details.right<span><h5>Abstract</h5>Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (≈47 meV) and Urbach tail (≈29 meV). This approach provides a ≈50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a ≈70% external quantum efficiency at their excitonic peak.<br><br><h5>Citation</h5>Kim, Y., Che, F., Jo, J. W., Choi, J., García de Arquer, F. P., Voznyy, O., … Sargent, E. H. (2019). A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 31(17), 1805580. doi:10.1002/adma.201805580<br><br><h5>Acknowledgements</h5>Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Wiley,equals">Wiley</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Advanced Materials,equals">Advanced Materials</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1002/adma.201805580">10.1002/adma.201805580</a><br><br><h5>Additional Links</h5>https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805580</span>
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)
kaust.grant.numberOSR-2017-CPF-3325
orcid.authorKim, Younghoon
orcid.authorChe, Fanglin
orcid.authorJo, Jea Woong
orcid.authorChoi, Jongmin
orcid.authorGarcía de Arquer, F. Pelayo
orcid.authorVoznyy, Oleksandr
orcid.authorSun, Bin
orcid.authorKim, Junghwan
orcid.authorChoi, Min-Jae
orcid.authorQuintero-Bermudez, Rafael
orcid.authorFan, Fengjia
orcid.authorTan, Chih Shan
orcid.authorBladt, Eva
orcid.authorWalters, Grant
orcid.authorProppe, Andrew H.
orcid.authorZou, Chengqin
orcid.authorYuan, Haifeng
orcid.authorBals, Sara
orcid.authorHofkens, Johan
orcid.authorRoeffaers, Maarten B. J.
orcid.authorHoogland, Sjoerd
orcid.authorSargent, E.::0000-0003-0396-6495
orcid.id0000-0003-0396-6495
Files