Metal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter

dc.contributor.authorChiu, Ming-Hui
dc.contributor.authorTang, Hao-Ling
dc.contributor.authorTseng, Chien-Chih
dc.contributor.authorHan, Yimo
dc.contributor.authorAljarb, Areej
dc.contributor.authorHuang, Jing-Kai
dc.contributor.authorWan, Yi
dc.contributor.authorFu, Jui-Han
dc.contributor.authorZhang, Xixiang
dc.contributor.authorChang, Wen-Hao
dc.contributor.authorMuller, David A
dc.contributor.authorTakenobu, Taishi
dc.contributor.authorTung, Vincent
dc.contributor.authorLi, Lain-Jong
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.institutionDepartment of Electrophysics, National Chiao Tung University, Hsinchu, 300, Taiwan.
dc.contributor.institutionSchool of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
dc.contributor.institutionDepartment of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan.
dc.date.accessioned2019-05-21T13:02:27Z
dc.date.available2019-05-21T13:02:27Z
dc.date.issued2019-03-25
dc.date.published-online2019-03-25
dc.date.published-print2019-05
dc.description.abstract2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large-area electronics and circuits strongly relies on wafer-scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal-guided selective growth (MGSG), is reported. The success of control over the transition-metal-precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p- and n-type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom-up complementary metal-oxide-semiconductor inverter based on p-type WSe2 and n-type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.
dc.description.sponsorshipM.-H.C. and H.-L.T. contributed equally to this work. V.T. and L.J.L. thank the support from KAUST (Saudi Arabia). W.H.C. acknowledges support from MOST of Taiwan (MOST-104-2628-M-009-002-MY3, MOST-105-2119-M-009-014-MY3) and the Center for Emergent Functional Matter Science (CEFMS) of NCTU. Y.H. and D.A.M. made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation (NSF) Materials Research Science and Engineering Centers (MRSEC) program (DMR-1120296) and NSF award 1429155. V.T. acknowledges the support from User Proposals (#4420 and #5067) at the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors also acknowledge the support from Nanofabrication Core Lab in KAUST.
dc.eprint.versionPost-print
dc.identifier.citationChiu M, Tang H, Tseng C, Han Y, Aljarb A, et al. (2019) Metal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter. Advanced Materials 31: 1900861. Available: http://dx.doi.org/10.1002/adma.201900861.
dc.identifier.doi10.1002/adma.201900861
dc.identifier.doi10.1002/adma.201970132
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.journalAdvanced Materials
dc.identifier.urihttp://hdl.handle.net/10754/652986
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/adma.201900861
dc.relation.urlhttps://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/adma.201900861
dc.rightsArchived with thanks to Advanced Materials
dc.rightsThis file is an open access version redistributed from: https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/adma.201900861
dc.rights.embargodate2020-03-25
dc.subjectChemical Vapor Deposition
dc.subjectHeterojunctions
dc.subject2D Materials
dc.subjectMolybdenum Diselenide
dc.subjectTransition Metal Dichalcogenides
dc.subjectSelective Growth
dc.subjectTungsten Diselenide
dc.titleMetal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2020-03-25<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-3753-8149&spc.sf=dc.date.issued&spc.sd=DESC">Chiu, Ming-Hui</a> <a href="https://orcid.org/0000-0003-3753-8149" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Tang, Hao-Ling,equals">Tang, Hao-Ling</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Tseng, Chien-Chih,equals">Tseng, Chien-Chih</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Han, Yimo,equals">Han, Yimo</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-8716-4600&spc.sf=dc.date.issued&spc.sd=DESC">Aljarb, Areej</a> <a href="https://orcid.org/0000-0002-8716-4600" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Huang, Jing-Kai,equals">Huang, Jing-Kai</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-6202-4193&spc.sf=dc.date.issued&spc.sd=DESC">Wan, Yi</a> <a href="https://orcid.org/0000-0002-6202-4193" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Fu, Jui-Han,equals">Fu, Jui-Han</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-3478-6414&spc.sf=dc.date.issued&spc.sd=DESC">Zhang, Xixiang</a> <a href="https://orcid.org/0000-0002-3478-6414" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Chang, Wen-Hao,equals">Chang, Wen-Hao</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Muller, David A,equals">Muller, David A</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Takenobu, Taishi,equals">Takenobu, Taishi</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-3230-0932&spc.sf=dc.date.issued&spc.sd=DESC">Tung, Vincent</a> <a href="https://orcid.org/0000-0003-3230-0932" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-4059-7783&spc.sf=dc.date.issued&spc.sd=DESC">Li, Lain-Jong</a> <a href="https://orcid.org/0000-0002-4059-7783" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Material Science and Engineering Program,equals">Material Science and Engineering Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><br><h5>Online Publication Date</h5>2019-03-25<br><br><h5>Print Publication Date</h5>2019-05<br><br><h5>Date</h5>2019-03-25</span>
display.details.right<span><h5>Abstract</h5>2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large-area electronics and circuits strongly relies on wafer-scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal-guided selective growth (MGSG), is reported. The success of control over the transition-metal-precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p- and n-type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom-up complementary metal-oxide-semiconductor inverter based on p-type WSe2 and n-type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.<br><br><h5>Citation</h5>Chiu M, Tang H, Tseng C, Han Y, Aljarb A, et al. (2019) Metal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter. Advanced Materials 31: 1900861. Available: http://dx.doi.org/10.1002/adma.201900861.<br><br><h5>Acknowledgements</h5>M.-H.C. and H.-L.T. contributed equally to this work. V.T. and L.J.L. thank the support from KAUST (Saudi Arabia). W.H.C. acknowledges support from MOST of Taiwan (MOST-104-2628-M-009-002-MY3, MOST-105-2119-M-009-014-MY3) and the Center for Emergent Functional Matter Science (CEFMS) of NCTU. Y.H. and D.A.M. made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation (NSF) Materials Research Science and Engineering Centers (MRSEC) program (DMR-1120296) and NSF award 1429155. V.T. acknowledges the support from User Proposals (#4420 and #5067) at the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors also acknowledge the support from Nanofabrication Core Lab in KAUST.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Wiley,equals">Wiley</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Advanced Materials,equals">Advanced Materials</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1002/adma.201900861">10.1002/adma.201900861</a><br><a href="https://doi.org/10.1002/adma.201970132">10.1002/adma.201970132</a><br><br><h5>Additional Links</h5>https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201900861https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/adma.201900861</span>
kaust.personChiu, Ming-Hui
kaust.personTang, Hao-Ling
kaust.personAljarb, Areej
kaust.personHuang, Jing-Kai
kaust.personWan, Yi
kaust.personFu, Jui-Han
kaust.personZhang, Xixiang
kaust.personTung, Vincent
kaust.personLi, Lain-Jong
orcid.authorChiu, Ming-Hui::0000-0003-3753-8149
orcid.authorTang, Hao-Ling
orcid.authorTseng, Chien-Chih
orcid.authorHan, Yimo
orcid.authorAljarb, Areej::0000-0002-8716-4600
orcid.authorHuang, Jing-Kai
orcid.authorWan, Yi::0000-0002-6202-4193
orcid.authorFu, Jui-Han
orcid.authorZhang, Xixiang::0000-0002-3478-6414
orcid.authorChang, Wen-Hao
orcid.authorMuller, David A
orcid.authorTakenobu, Taishi
orcid.authorTung, Vincent::0000-0003-3230-0932
orcid.authorLi, Lain-Jong::0000-0002-4059-7783
orcid.id0000-0002-4059-7783
orcid.id0000-0003-3230-0932
orcid.id0000-0002-3478-6414
orcid.id0000-0002-6202-4193
orcid.id0000-0002-8716-4600
orcid.id0000-0003-3753-8149
refterms.dateFOA2021-06-23T06:24:35Z
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Articlefile1.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description:
Post-print