Ink Engineering of Transport Layers for 9.5% Efficient All-Printed Semitransparent Nonfullerene Solar Cells

dc.contributor.authorCorzo Diaz, Daniel Alejandro
dc.contributor.authorBihar, Eloise
dc.contributor.authorAlexandre, Emily Bezerra
dc.contributor.authorRosas-Villalva, Diego
dc.contributor.authorBaran, Derya
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentKing Abdullah University of Science and Technology (KAUST) Division of Physical Science and Engineering KAUST Solar Center KAUST Thuwal 23955 Kingdom of Saudi Arabia
dc.contributor.departmentKAUST Solar Center (KSC)
dc.date.accepted2020-11-13
dc.date.accessioned2020-11-30T12:49:03Z
dc.date.available2020-11-30T12:49:03Z
dc.date.issued2020-11-26
dc.date.published-online2020-11-26
dc.date.published-print2021-02
dc.date.submitted2020-07-08
dc.description.abstractNew polymer donors and nonfullerene acceptors have elevated the performance and stability of solar cells to higher grounds. To achieve their full potential, they require their adaptation to scalable and cost-effective solution manufacturing techniques for large area deposition. Likewise, formulating scalable solution-based transport layer inks that are compatible with the photoactive layer is imperative. This manuscript reports the full integration of solution-based transport layers and electrode alongside a PTB7-Th:IEICO-4F bulk heterojunction in inverted architecture through inkjet-printing, resulting in power conversion efficiencies up to 12.4% opaque devices and 9.5% semitransparent devices with average visible transmittance values of 50.1%, including hole transport layer. The wetting envelope of the highly-hydrophobic photoactive layer alongside the surface energy of candidate solutions and solvents allows the formulation of thick transport layer inks that are compatible with the drop-on-demand inkjet-printing process and yield uniform and homogenous films. Moreover, the surface energy components of the donor and acceptor serves as a fingerprint to assess the vertical stratification of the photoactive layer with the inclusion of different solvents. This methodology addresses a scale-up bottleneck of solution-based transport layers for high-efficiency organic cells, enabling its adaptation to high-throughput techniques including slot-die and roll-to-roll coating.
dc.description.sponsorshipD.C. and D.B. thank Xin Song, Nicola Gasparini, Joel Throughton, and Stefan Schlisske for fruitful discussions.
dc.eprint.versionPost-print
dc.identifier.citationCorzo, D., Bihar, E., Alexandre, E. B., Rosas-Villalva, D., & Baran, D. (2020). Ink Engineering of Transport Layers for 9.5% Efficient All-Printed Semitransparent Nonfullerene Solar Cells. Advanced Functional Materials, 2005763. doi:10.1002/adfm.202005763
dc.identifier.doi10.1002/adfm.202005763
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.journalAdvanced Functional Materials
dc.identifier.pages2005763
dc.identifier.urihttp://hdl.handle.net/10754/666157
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202005763
dc.rightsArchived with thanks to Advanced Functional Materials
dc.rights.embargodate2021-11-26
dc.titleInk Engineering of Transport Layers for 9.5% Efficient All-Printed Semitransparent Nonfullerene Solar Cells
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2021-11-26<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-7745-2484&spc.sf=dc.date.issued&spc.sd=DESC">Corzo Diaz, Daniel Alejandro</a> <a href="https://orcid.org/0000-0001-7745-2484" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Bihar, Eloise,equals">Bihar, Eloise</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Alexandre, Emily Bezerra,equals">Alexandre, Emily Bezerra</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Rosas-Villalva, Diego,equals">Rosas-Villalva, Diego</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0003-2196-8187&spc.sf=dc.date.issued&spc.sd=DESC">Baran, Derya</a> <a href="https://orcid.org/0000-0003-2196-8187" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Material Science and Engineering Program,equals">Material Science and Engineering Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division,equals">Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=King Abdullah University of Science and Technology (KAUST) Division of Physical Science and Engineering KAUST Solar Center KAUST Thuwal 23955 Kingdom of Saudi Arabia,equals">King Abdullah University of Science and Technology (KAUST) Division of Physical Science and Engineering KAUST Solar Center KAUST Thuwal 23955 Kingdom of Saudi Arabia</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=KAUST Solar Center (KSC),equals">KAUST Solar Center (KSC)</a><br><br><h5>Online Publication Date</h5>2020-11-26<br><br><h5>Print Publication Date</h5>2021-02<br><br><h5>Date</h5>2020-11-26<br><br><h5>Submitted Date</h5>2020-07-08</span>
display.details.right<span><h5>Abstract</h5>New polymer donors and nonfullerene acceptors have elevated the performance and stability of solar cells to higher grounds. To achieve their full potential, they require their adaptation to scalable and cost-effective solution manufacturing techniques for large area deposition. Likewise, formulating scalable solution-based transport layer inks that are compatible with the photoactive layer is imperative. This manuscript reports the full integration of solution-based transport layers and electrode alongside a PTB7-Th:IEICO-4F bulk heterojunction in inverted architecture through inkjet-printing, resulting in power conversion efficiencies up to 12.4% opaque devices and 9.5% semitransparent devices with average visible transmittance values of 50.1%, including hole transport layer. The wetting envelope of the highly-hydrophobic photoactive layer alongside the surface energy of candidate solutions and solvents allows the formulation of thick transport layer inks that are compatible with the drop-on-demand inkjet-printing process and yield uniform and homogenous films. Moreover, the surface energy components of the donor and acceptor serves as a fingerprint to assess the vertical stratification of the photoactive layer with the inclusion of different solvents. This methodology addresses a scale-up bottleneck of solution-based transport layers for high-efficiency organic cells, enabling its adaptation to high-throughput techniques including slot-die and roll-to-roll coating.<br><br><h5>Citation</h5>Corzo, D., Bihar, E., Alexandre, E. B., Rosas-Villalva, D., & Baran, D. (2020). Ink Engineering of Transport Layers for 9.5% Efficient All-Printed Semitransparent Nonfullerene Solar Cells. Advanced Functional Materials, 2005763. doi:10.1002/adfm.202005763<br><br><h5>Acknowledgements</h5>D.C. and D.B. thank Xin Song, Nicola Gasparini, Joel Throughton, and Stefan Schlisske for fruitful discussions.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=Wiley,equals">Wiley</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Advanced Functional Materials,equals">Advanced Functional Materials</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1002/adfm.202005763">10.1002/adfm.202005763</a><br><br><h5>Additional Links</h5>https://onlinelibrary.wiley.com/doi/10.1002/adfm.202005763</span>
kaust.personCorzo Diaz, Daniel Alejandro
kaust.personBihar, Eloise
kaust.personAlexandre, Emily Bezerra
kaust.personRosas-Villalva, Diego
kaust.personBaran, Derya
orcid.authorCorzo Diaz, Daniel Alejandro::0000-0001-7745-2484
orcid.authorBihar, Eloise
orcid.authorAlexandre, Emily Bezerra
orcid.authorRosas-Villalva, Diego
orcid.authorBaran, Derya::0000-0003-2196-8187
orcid.id0000-0003-2196-8187
orcid.id0000-0001-7745-2484
refterms.dateFOA2020-12-01T07:44:47Z
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AFM Main revised-After proof.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format
Description:
Accepted manuscript