Spin-transfer torque in spin filter tunnel junctions

dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
dc.contributor.authorOrtiz Pauyac, Christian
dc.contributor.authorKalitsov, Alan
dc.contributor.authorManchon, Aurelien
dc.contributor.authorChshiev, Mairbek
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSpintronics Theory Group
dc.contributor.institutionSPINTEC, UMR CEA/CNRS/UJF-Grenoble 1/Grenoble-INP, INAC, Grenoble, F-38054, France
dc.date.accessioned2015-03-17T06:10:16Z
dc.date.available2015-03-17T06:10:16Z
dc.date.issued2014-12-08
dc.description.abstractSpin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.
dc.eprint.versionPublisher's Version/PDF
dc.identifier.citationSpin-transfer torque in spin filter tunnel junctions 2014, 90 (23) Physical Review B
dc.identifier.doi10.1103/PhysRevB.90.235417
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.journalPhysical Review B
dc.identifier.urihttp://hdl.handle.net/10754/346730
dc.publisherAmerican Physical Society (APS)
dc.relation.urlhttp://link.aps.org/doi/10.1103/PhysRevB.90.235417
dc.rightsArchived with thanks to Physical Review B
dc.titleSpin-transfer torque in spin filter tunnel junctions
dc.typeArticle
display.details.left<span><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-5074-8920&spc.sf=dc.date.issued&spc.sd=DESC">Ortiz Pauyac, Christian</a> <a href="https://orcid.org/0000-0001-5074-8920" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Kalitsov, Alan,equals">Kalitsov, Alan</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-4768-293X&spc.sf=dc.date.issued&spc.sd=DESC">Manchon, Aurelien</a> <a href="https://orcid.org/0000-0002-4768-293X" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Chshiev, Mairbek,equals">Chshiev, Mairbek</a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Material Science and Engineering Program,equals">Material Science and Engineering Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Spintronics Theory Group,equals">Spintronics Theory Group</a><br><br><h5>Date</h5>2014-12-08</span>
display.details.right<span><h5>Abstract</h5>Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.<br><br><h5>Citation</h5>Spin-transfer torque in spin filter tunnel junctions 2014, 90 (23) Physical Review B<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=American Physical Society (APS),equals">American Physical Society (APS)</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=Physical Review B,equals">Physical Review B</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1103/PhysRevB.90.235417">10.1103/PhysRevB.90.235417</a><br><br><h5>Additional Links</h5>http://link.aps.org/doi/10.1103/PhysRevB.90.235417</span>
kaust.personManchon, Aurelien
kaust.personOrtiz Pauyac, Christian
orcid.authorOrtiz Pauyac, Christian::0000-0001-5074-8920
orcid.authorKalitsov, Alan
orcid.authorManchon, Aurelien::0000-0002-4768-293X
orcid.authorChshiev, Mairbek
orcid.id0000-0002-4768-293X
orcid.id0000-0001-5074-8920
refterms.dateFOA2018-06-13T16:16:23Z
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.90.235417.pdf
Size:
454.1 KB
Format:
Adobe Portable Document Format
Description:
Main article