Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation

Abstract
Digital image correlation (DIC) is now an extensively applied full-field measurement technique with subpixel accuracy. A systematic drawback of this technique, however, is the smoothening of the kinematic field (e.g., displacement and strains) across interfaces between dissimilar materials, where the deformation gradient is known to be large. This can become an issue when a high level of accuracy is needed, for example, in the interfacial region of composites or joints. In this work, we described the application of global conforming finite-element-based DIC technique to obtain precise kinematic fields at interfaces between dissimilar materials. Speckle images from both numerical and actual experiments processed by the described global DIC technique better captured sharp strain gradient at the interface than local subset-based DIC. © 2016 Elsevier Ltd. All rights reserved.

Citation
Tao R, Moussawi A, Lubineau G, Pan B (2016) Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation. Optics and Lasers in Engineering 81: 103–112. Available: http://dx.doi.org/10.1016/j.optlaseng.2016.01.012.

Acknowledgements
The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

Publisher
Elsevier BV

Journal
Optics and Lasers in Engineering

DOI
10.1016/j.optlaseng.2016.01.012

Permanent link to this record