A state space approach for the eigenvalue problem of marine risers

Type
Article

Authors
Alfosail, Feras
Nayfeh, Ali H.
Younis, Mohammad I.

KAUST Department
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division

Online Publication Date
2017-10-05

Print Publication Date
2018-03

Date
2017-10-05

Abstract
A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using the modified Gram–Schmidt orthonormalization process as an intermediate step during the numerical integration process with the fourth-order Runge–Kutta scheme. The obtained results are validated against those obtained with other numerical methods, such as the finite-element, Galerkin, and power-series methods, and are found to be in good agreement. The state-space approach is shown to be computationally more efficient than the other methods. Also, we investigate the effect of a high applied tension, a high apparent weight, and higher-order modes on the accuracy of the numerical scheme. We demonstrate that, by applying the orthonormalization process, the stability and convergence of the approach are significantly improved.

Citation
Alfosail FK, Nayfeh AH, Younis MI (2017) A state space approach for the eigenvalue problem of marine risers. Meccanica. Available: http://dx.doi.org/10.1007/s11012-017-0769-z.

Acknowledgements
This research was made possible through the fund and resources of the IT Research Computing at King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. Also, the first author acknowledges the support of Saudi Aramco.

Publisher
Springer Nature

Journal
Meccanica

DOI
10.1007/s11012-017-0769-z

Additional Links
http://link.springer.com/article/10.1007/s11012-017-0769-z

Permanent link to this record