A Magnetoresistive Tactile Sensor for Harsh Environment Applications

Abstract
A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

Citation
A Magnetoresistive Tactile Sensor for Harsh Environment Applications 2016, 16 (5):650 Sensors

Acknowledgements
Research reported in this publication is supported by the King Abdullah University of Science and Technology (KAUST). INESC-MN thanks FCT under EXCL/CTM-NAN/0441/2012 Project and Pest-OE/CTM/LA0024/2011. D. C. Leitao acknowledges FCT Grant SFRH/BPD/72359/2010.

Publisher
MDPI AG

Journal
Sensors

DOI
10.3390/s16050650

PubMed ID
27164113

Additional Links
http://www.mdpi.com/1424-8220/16/5/650

Permanent link to this record