Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents

Abstract
The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.

Citation
Adil K, Bhatt PM, Belmabkhout Y, Abtab SMT, Jiang H, et al. (2017) Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials: 1702953. Available: http://dx.doi.org/10.1002/adma.201702953.

Acknowledgements
K.A. and P.M.B. contributed equally to this work. This research was financed by ARAMCO.

Publisher
Wiley

Journal
Advanced Materials

DOI
10.1002/adma.201702953

PubMed ID
28833740

Additional Links
http://onlinelibrary.wiley.com/doi/10.1002/adma.201702953/full

Permanent link to this record