Investigations of the stability and electronic properties of two-dimensional Ga2O3 nanosheet in air from first-principles calculations

Embargo End Date
2022-09-18

Type
Article

Authors
Dong, Linpeng
Zhou, Shun
Xin, Bin
Yang, Chen
Zhang, Jin
Liu, Huan
Zhang, Lichun
Yang, Chuanlu
Liu, Weiguo

KAUST Department
Physical Science and Engineering (PSE) Division

Online Publication Date
2020-09-16

Print Publication Date
2021-01

Date
2020-09-16

Submitted Date
2020-07-31

Abstract
2D Ga2O3 nanosheet with ultra-high carrier mobility and wide bandgap has gained extensively interests due to its great potential in next generation of solar-bind photodetectors, high-power devices, and gas sensors. However, the study of the stability and air-resistance of Ga2O3 nanosheet is scare up to now. Herein, we investigate the stability and electronic properties of Ga2O3 in air through first-principles calculations. It is found that O2 molecule can physisorb on Ga2O3 nanosheet with the binding energy of −0.12 eV, while it is very hard to dissociate spontaneously due to an extremely high dissociation energy barrier of 4.78 eV. The O2 molecule physisorption can introduce extra energy levels in the bandgap and affect the optical properties of Ga2O3 nanosheet. While H2O molecule adsorption has weak effects on the structural and electronic properties of Ga2O3 nanosheet. The high air-resistance of Ga2O3 nanosheet is attributed to the strong charge transfer between the Ga and O ions, which avoids the surplus electrons induced by the dangling bonds to interact with foreign molecules. These theoretical results indicate Ga2O3 nanosheet has extremely high stability to resist oxidation and humid environment, which is a very promising next-generation 2D material for high-power and ultraviolet applications.

Citation
Dong, L., Zhou, S., Xin, B., Yang, C., Zhang, J., Liu, H., … Liu, W. (2021). Investigations of the stability and electronic properties of two-dimensional Ga2O3 nanosheet in air from first-principles calculations. Applied Surface Science, 537, 147883. doi:10.1016/j.apsusc.2020.147883

Acknowledgements
This work is supported by the Key Research and Development Program of Shaanxi Province (2019ZDLGY16-01), Xi'an Key Laboratory of Intelligent Detection and Perception (201805061ZD12CG45). Linpeng Dong, Bin Xin, and Weiguo Liu designed this project. Linpeng Dong performed the first principles calculations, analyzed the calculated results and wrote the original manuscript. Shun Zhou and Chen Yang checked the calculation results and modified the manuscript. Jin Zhang and Huan Liu modified the manuscript. Lichun Zhang and Chuanlu Yang applied the resources.

Publisher
Elsevier BV

Journal
Applied Surface Science

DOI
10.1016/j.apsusc.2020.147883

Additional Links
https://linkinghub.elsevier.com/retrieve/pii/S0169433220326404

Permanent link to this record