Computational imaging of sperm locomotion

Type
Article

Authors
Daloglu, Mustafa Ugur
Ozcan, Aydogan

Date
2017-07-29

Abstract
Not only essential for scientific research, but also in the analysis of male fertility and for animal husbandry, sperm tracking and characterization techniques have been greatly benefiting from computational imaging. Digital image sensors, in combination with optical microscopy tools and powerful computers, have enabled the use of advanced detection and tracking algorithms that automatically map sperm trajectories and calculate various motility parameters across large data sets. Computational techniques are driving the field even further, facilitating the development of unconventional sperm imaging and tracking methods that do not rely on standard optical microscopes and objective lenses, which limit the field of view and volume of the semen sample that can be imaged. As an example, a holographic on-chip sperm imaging platform, only composed of a light-emitting diode and an opto-electronic image sensor, has emerged as a high-throughput, lowcost and portable alternative to lens-based traditional sperm imaging and tracking methods. In this approach, the sample is placed very close to the image sensor chip, which captures lensfree holograms generated by the interference of the background illumination with the light scattered from sperm cells. These holographic patterns are then digitally processed to extract both the amplitude and phase information of the spermatozoa, effectively replacing the microscope objective lens with computation. This platform has further enabled high-throughput 3D imaging of spermatozoa with submicron 3D positioning accuracy in large sample volumes, revealing various rare locomotion patterns. We believe that computational chip-scale sperm imaging and 3D tracking techniques will find numerous opportunities in both sperm related research and commercial applications.

Citation
Daloglu, M. U., & Ozcan, A. (2017). Computational imaging of sperm locomotion. Biology of Reproduction, 97(2), 182–188. doi:10.1093/biolre/iox086

Acknowledgements
The Ozcan Research Group at UCLA gratefully acknowledges the support of the Presidential Early Career Award for Scientists and Engineers (PECASE), the Army Research Office (ARO; W911NF-13-1-0419 and W911NF-13-1-0197), the ARO Life Sciences Division, the National Science Foundation (NSF) CBET Division Biophotonics Program, the NSF Emerging Frontiers in Research and Innovation (EFRI) Award, the NSF EAGER Award, NSF INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) Program, Office of Naval Research (ONR), the National Institutes of Health (NIH), the Howard Hughes Medical Institute (HHMI), Vodafone Americas Foundation, the Mary Kay Foundation, Steven & Alexandra Cohen Foundation, and KAUST. This work is based upon research performed in a laboratory renovated by the National Science Foundation under Grant No. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009 (ARRA). The authors also thank Dr. David Mortimer for sharing a high resolution image for our first figure.

Publisher
Oxford University Press (OUP)

Journal
Biology of Reproduction

DOI
10.1093/biolre/iox086

PubMed ID
29044431

PubMed Central ID
PMC5803781

Additional Links
https://academic.oup.com/biolreprod/article/97/2/182/4055957

Permanent link to this record