Ambipolar blend-based organic electrochemical transistors and inverters

CMOS-like circuits in bioelectronics translate biological to electronic signals using organic electrochemical transistors (OECTs) based on organic mixed ionic-electronic conductors (OMIECs). Ambipolar OECTs can reduce the complexity of circuit fabrication, and in bioelectronics have the major advantage of detecting both cations and anions in one device, which further expands the prospects for diagnosis and sensing. Ambipolar OMIECs however, are scarce, limited by intricate materials design and complex synthesis. Here we demonstrate that judicious selection of p- and n-type materials for blend-based OMIECs offers a simple and tunable approach for the fabrication of ambipolar OECTs and corresponding circuits. These OECTs show high transconductance and excellent stability over multiple alternating polarity cycles, with ON/OFF ratios exceeding 103 and high gains in corresponding inverters. This work presents a simple and versatile new paradigm for the fabrication of ambipolar OMIECs and circuits with little constraints on materials design and synthesis and numerous possibilities for tunability and optimization towards higher performing bioelectronic applications.

Stein, E., Nahor, O., Stolov, M., Freger, V., Petruta, I. M., McCulloch, I., & Frey, G. L. (2022). Ambipolar blend-based organic electrochemical transistors and inverters. Nature Communications, 13(1).

This project was partially funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 964677 (MITICS). The authors thank Professor Jonathan Rivnay for fruitful discussions.

Springer Science and Business Media LLC

Nature communications


PubMed ID

Additional Links

Permanent link to this record