An energy stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system

dc.contributor.authorHuo, Xiaokai
dc.contributor.authorLiu, Hailiang
dc.contributor.authorTzavaras, Athanasios
dc.contributor.authorWang, Shuaikun
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.institutionIowa State University, Mathematics Department, Ames, IA 500
dc.date.accessioned2021-06-09T06:26:53Z
dc.date.available2021-01-10T11:51:06Z
dc.date.available2021-06-09T06:26:53Z
dc.date.issued2021-09-09
dc.date.posted2020-05-16
dc.date.published-online2021-09-09
dc.date.published-print2021-01
dc.description.abstractWe develop a new finite difference scheme for the Maxwell-Stefan diffusion system. The scheme is conservative, energy stable and positivity-preserving. These nice properties stem from a variational structure and are proved by reformulating the finite difference scheme into an equivalent optimization problem. The solution to the scheme emerges as the minimizer of the optimization problem, and as a consequence energy stability and positivity-preserving properties are obtained.
dc.eprint.versionPost-Print
dc.identifier.arxivid2005.08062
dc.identifier.citationHuo, X., Liu, H., Tzavaras, A. E., & Wang, S. (2021). An Energy Stable and Positivity-Preserving Scheme for the Maxwell--Stefan Diffusion System. SIAM Journal on Numerical Analysis, 59(5), 2321–2345. doi:10.1137/20m1338666
dc.identifier.doi10.1137/20m1338666
dc.identifier.journalAccepted by the SIAM Journal on Numerical Analysis
dc.identifier.urihttp://hdl.handle.net/10754/666853
dc.publisherarXiv
dc.relation.urlhttps://arxiv.org/pdf/2005.08062
dc.rightsArchived with thanks to arXiv
dc.titleAn energy stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system
dc.typeArticle
kaust.personHuo, Xiaokai
kaust.personTzavaras, Athanasios
kaust.personWang, Shuaikun
refterms.dateFOA2021-01-10T11:52:03Z
Files
Original bundle
Now showing 1 - 1 of 1
Name:
main (4).pdf
Size:
911.72 KB
Format:
Adobe Portable Document Format
Description:
Accepted manuscript
Collections

Version History

Now showing 1 - 3 of 3
VersionDateSummary
2021-11-24 08:36:36
Updated with publisher version
2*
2021-06-09 06:24:59
Published in journal
2021-01-10 11:51:06
* Selected version