Enhancement of Dielectric Permittivity of Ti3C2Tx MXene/Polymer Composites by Controlling Flake Size and Surface Termination

dc.contributor.authorTu, Shao Bo
dc.contributor.authorJiang, Qiu
dc.contributor.authorZhang, Junwei
dc.contributor.authorHe, Xin
dc.contributor.authorHedhili, Mohamed N.
dc.contributor.authorZhang, Xixiang
dc.contributor.authorAlshareef, Husam N.
dc.contributor.departmentFunctional Nanomaterials and Devices Research Group
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSurface Science
dc.date.accessioned2019-07-25T12:48:08Z
dc.date.available2019-07-25T12:48:08Z
dc.date.issued2019-07-15
dc.description.abstractWe report a strong effect of the MXene flake size and surface termination on the dielectric permittivity of MXene polymer composites. Specifically, poly(vinylidene fluoride-trifluoro-ethylene-chlorofluoroehylene) or P(VDF-TrFE-CFE) polymer embedded with large (ca. 4.5 μm) Ti3C2Tx flakes achieves a dielectric permittivity as high as 105 near the percolation limit of 15.3 wt % MXene loading. In comparison, the dielectric permittivity of MXene/P(VDF-TrFE-CFE) using small (ca. 1.5 μm) Ti3C2Tx flakes (S-MXene) achieves a dielectric permittivity of 104 near the percolation limit of 16.8 wt %. Meanwhile, increasing the concentration of surface functional groups on the MXene surface (−O, −F, and −OH) by extending the etching time gives a dielectric constant of 2204 near the percolation limit of 15.7 wt %. The ratio of permittivity to the loss factor of our large flake composite is superior to that of the small flake composite, and to all previously reported carbon-based fillers in P(VDF-TrFE-CFE). We show that the dielectric permittivity enhancement is strongly related to the charge accumulation at the surfaces between the two dimensional (2D) MXene flakes and the polymer matrix under an external applied electric field.
dc.description.sponsorshipResearch reported in this publication is supported by King Abdullah University of Science and Technology (KAUST). The TEM analysis was individually completed by J.Z. The authors would like to thank Chenhui Zhang and Dr. Fei Xue for their helpful discussion, and the Advanced Nanofabrication, Imaging, and Characterization Laboratory at KAUST for their excellent assistance.
dc.eprint.versionPost-print
dc.identifier.citationTu, S., Jiang, Q., Zhang, J., He, X., Hedhili, M. N., Zhang, X., & Alshareef, H. N. (2019). Enhancement of Dielectric Permittivity of Ti3C2Tx MXene/Polymer Composites by Controlling Flake Size and Surface Termination. ACS Applied Materials & Interfaces, 11(30), 27358–27362. doi:10.1021/acsami.9b09137
dc.identifier.doi10.1021/acsami.9b09137
dc.identifier.journalACS Applied Materials & Interfaces
dc.identifier.urihttp://hdl.handle.net/10754/656181
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttp://pubs.acs.org/doi/10.1021/acsami.9b09137
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/10.1021/acsami.9b09137.
dc.rights.embargodate2020-07-15
dc.subjectMXene flakes
dc.subjectsize engineering
dc.subjectsurface terminations
dc.subjectdielectric permittivity
dc.subjectmicroscopic dipole
dc.titleEnhancement of Dielectric Permittivity of Ti3C2Tx MXene/Polymer Composites by Controlling Flake Size and Surface Termination
dc.typeArticle
display.details.left<span><h5>Embargo End Date</h5>2020-07-15<br><br><h5>Type</h5>Article<br><br><h5>Authors</h5><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-9684-689X&spc.sf=dc.date.issued&spc.sd=DESC">Tu, Shao Bo</a> <a href="https://orcid.org/0000-0002-9684-689X" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-2408-198X&spc.sf=dc.date.issued&spc.sd=DESC">Jiang, Qiu</a> <a href="https://orcid.org/0000-0002-2408-198X" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.author=Zhang, Junwei,equals">Zhang, Junwei</a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-7009-2826&spc.sf=dc.date.issued&spc.sd=DESC">He, Xin</a> <a href="https://orcid.org/0000-0001-7009-2826" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-3624-036X&spc.sf=dc.date.issued&spc.sd=DESC">Hedhili, Mohamed N.</a> <a href="https://orcid.org/0000-0002-3624-036X" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0002-3478-6414&spc.sf=dc.date.issued&spc.sd=DESC">Zhang, Xixiang</a> <a href="https://orcid.org/0000-0002-3478-6414" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><a href="https://repository.kaust.edu.sa/search?query=orcid.id:0000-0001-5029-2142&spc.sf=dc.date.issued&spc.sd=DESC">Alshareef, Husam N.</a> <a href="https://orcid.org/0000-0001-5029-2142" target="_blank"><img src="https://repository.kaust.edu.sa/server/api/core/bitstreams/82a625b4-ed4b-40c8-865a-d6a5225a26a4/content" width="16" height="16"/></a><br><br><h5>KAUST Department</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Functional Nanomaterials and Devices Research Group,equals">Functional Nanomaterials and Devices Research Group</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Material Science and Engineering Program,equals">Material Science and Engineering Program</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Physical Science and Engineering (PSE) Division,equals">Physical Science and Engineering (PSE) Division</a><br><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.department=Surface Science,equals">Surface Science</a><br><br><h5>Date</h5>2019-07-15</span>
display.details.right<span><h5>Abstract</h5>We report a strong effect of the MXene flake size and surface termination on the dielectric permittivity of MXene polymer composites. Specifically, poly(vinylidene fluoride-trifluoro-ethylene-chlorofluoroehylene) or P(VDF-TrFE-CFE) polymer embedded with large (ca. 4.5 μm) Ti3C2Tx flakes achieves a dielectric permittivity as high as 105 near the percolation limit of 15.3 wt % MXene loading. In comparison, the dielectric permittivity of MXene/P(VDF-TrFE-CFE) using small (ca. 1.5 μm) Ti3C2Tx flakes (S-MXene) achieves a dielectric permittivity of 104 near the percolation limit of 16.8 wt %. Meanwhile, increasing the concentration of surface functional groups on the MXene surface (−O, −F, and −OH) by extending the etching time gives a dielectric constant of 2204 near the percolation limit of 15.7 wt %. The ratio of permittivity to the loss factor of our large flake composite is superior to that of the small flake composite, and to all previously reported carbon-based fillers in P(VDF-TrFE-CFE). We show that the dielectric permittivity enhancement is strongly related to the charge accumulation at the surfaces between the two dimensional (2D) MXene flakes and the polymer matrix under an external applied electric field.<br><br><h5>Citation</h5>Tu, S., Jiang, Q., Zhang, J., He, X., Hedhili, M. N., Zhang, X., & Alshareef, H. N. (2019). Enhancement of Dielectric Permittivity of Ti3C2Tx MXene/Polymer Composites by Controlling Flake Size and Surface Termination. ACS Applied Materials & Interfaces, 11(30), 27358–27362. doi:10.1021/acsami.9b09137<br><br><h5>Acknowledgements</h5>Research reported in this publication is supported by King Abdullah University of Science and Technology (KAUST). The TEM analysis was individually completed by J.Z. The authors would like to thank Chenhui Zhang and Dr. Fei Xue for their helpful discussion, and the Advanced Nanofabrication, Imaging, and Characterization Laboratory at KAUST for their excellent assistance.<br><br><h5>Publisher</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.publisher=American Chemical Society (ACS),equals">American Chemical Society (ACS)</a><br><br><h5>Journal</h5><a href="https://repository.kaust.edu.sa/search?spc.sf=dc.date.issued&spc.sd=DESC&f.journal=ACS Applied Materials & Interfaces,equals">ACS Applied Materials & Interfaces</a><br><br><h5>DOI</h5><a href="https://doi.org/10.1021/acsami.9b09137">10.1021/acsami.9b09137</a><br><br><h5>Additional Links</h5>http://pubs.acs.org/doi/10.1021/acsami.9b09137</span>
kaust.acknowledged.supportUnitAdvanced Nanofabrication, Imaging, and Characterization Laboratory
kaust.personTu, Shao Bo
kaust.personJiang, Qiu
kaust.personZhang, Junwei
kaust.personHe, Xin
kaust.personHedhili, Mohamed N.
kaust.personZhang, Xixiang
kaust.personAlshareef, Husam N.
orcid.authorTu, Shao Bo::0000-0002-9684-689X
orcid.authorJiang, Qiu::0000-0002-2408-198X
orcid.authorZhang, Junwei
orcid.authorHe, Xin::0000-0001-7009-2826
orcid.authorHedhili, Mohamed N.::0000-0002-3624-036X
orcid.authorZhang, Xixiang::0000-0002-3478-6414
orcid.authorAlshareef, Husam N.::0000-0001-5029-2142
orcid.id0000-0001-5029-2142
orcid.id0000-0002-3478-6414
orcid.id0000-0002-3624-036X
orcid.id0000-0001-7009-2826
orcid.id0000-0002-2408-198X
orcid.id0000-0002-9684-689X
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
3-Clean Manuscript.pdf
Size:
933.27 KB
Format:
Adobe Portable Document Format
Description:
Accepted Manuscript
Name:
5-Supporting imformation.docx
Size:
2.54 MB
Format:
Microsoft Word XML
Description:
Supplemental files