Transition-metal dichalcogenides/Mg(OH)2 van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study

Abstract
We performed first-principles calculations of the structural, electronic, and optical properties of heterostructures which consist of transition metal dichalcogenides MX2 (M = Mo, W; X = S) stacked with Mg(OH)2. All the heterostructures are formed by van der Waals forces. The MoS2/Mg(OH)2 and WS2/Mg(OH)2 vdW heterostructures were found to be semiconductors with indirect bandgaps and possess intrinsic type-II band alignment. In particular, a comparison of the band edge positions with the redox potential of water indicates that the heterostructures are potential photocatalysts for water splitting, enabling water reduction on the MX2 layer and water oxidation on the Mg(OH)2 layer. Moreover, the photogenerated charges will be effectively separated in the presence of a large built-in electric field across the interface. In addition, all of the MX2/Mg(OH)2 heterostructures show strong optical absorption in the visible and infrared regions, indicating their promise for application in photocatalytic water splitting.

Citation
Luo Y, Wang S, Ren K, Chou J-P, Yu J, et al. (2019) Transition-metal dichalcogenides/Mg(OH)2 van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study. Physical Chemistry Chemical Physics 21: 1791–1796. Available: http://dx.doi.org/10.1039/c8cp06960c.

Acknowledgements
Yi Luo, Jin Yu, and Zhengming Sun are supported by the National Natural Science Foundation of China (Grant No. 51731004). Sake Wang is supported by the National Science Foundation for Young Scientists of China (Grant No. 11704165), and the Science Foundation of Jinling Institute of Technology (Grant No. 40620064). Dr Minglei Sun hopes to express his gratitude to the support of Mrs Yujing Xu over years.

Publisher
Royal Society of Chemistry (RSC)

Journal
Physical Chemistry Chemical Physics

DOI
10.1039/c8cp06960c

Additional Links
https://pubs.rsc.org/en/content/articlehtml/2019/cp/c8cp06960c

Permanent link to this record