Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions

Type
Article

Authors
Cheng, X.
McCoy, J. H.
Israelachvili, J. N.
Cohen, I.

KAUST Grant Number
KUS-C1-018-02

Online Publication Date
2011-09-01

Print Publication Date
2011-09-02

Date
2011-09-01

Abstract
The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

Citation
Cheng X, McCoy JH, Israelachvili JN, Cohen I (2011) Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions. Science 333: 1276–1279. Available: http://dx.doi.org/10.1126/science.1207032.

Acknowledgements
We thank T. Beatus, Y.-C. Lin, J. Brady, L. Ristroph, and N. Wagner for useful discussions. This research was supported by grants from NSF Civil, Mechanical, and Manufacturing Innovation, Division of Materials Research (DMR), and DMR Materials Research Science and Engineering Centers, and in part by award KUS-C1-018-02 from King Abdullah University of Science and Technology (KAUST). J. N. I. was supported by the U.S. Department of Energy, Division of Materials Sciences and Engineering under award DE-FG02-87ER-45331.

Publisher
American Association for the Advancement of Science (AAAS)

Journal
Science

DOI
10.1126/science.1207032

PubMed ID
21885778

Permanent link to this record