Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

Abstract
A methodology for estimating the octane index (OI), the research octane number (RON) and the motor octane number (MON) using ignition delay times from a constant volume combustion chamber with liquid fuel injection is proposed by adopting an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures of isooctane and n-heptane). Our methodology was developed using ignition delay times for toluene reference fuels (mixtures of toluene and n-heptane). A correlation between the OI and the ignition delay time at the initial charge temperature enabled the OI of non-PRFs to be predicted at specified temperatures. The methodology was validated using ignition delay times for toluene primary reference fuels (ternary mixtures of toluene, iso-octane, and n-heptane), fuels for advanced combustion engines (FACE) gasolines, and certification gasolines. Using this methodology, the RON, the MON, and the octane sensitivity were estimated in agreement with values obtained from standard test methods. A correlation between derived cetane number and RON is also provided. (C) 2016 Elsevier Ltd. All rights reserved.

Citation
Naser N, Yang SY, Kalghatgi G, Chung SH (2017) Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT). Fuel 187: 117–127. Available: http://dx.doi.org/10.1016/j.fuel.2016.09.013.

Acknowledgements
This work was supported by Saudi Aramco under the FUELCOM program and the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST).

Publisher
Elsevier BV

Journal
Fuel

DOI
10.1016/j.fuel.2016.09.013

Additional Links
http://www.sciencedirect.com/science/article/pii/S0016236116308729

Permanent link to this record