Electrothermally Tunable Arch Resonator

Type
Article

Authors
Hajjaj, Amal
Ramini, Abdallah
Alcheikh, Nouha
Younis, Mohammad I.

KAUST Department
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division

Online Publication Date
2017-03-18

Print Publication Date
2017-08

Date
2017-03-18

Abstract
This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291]

Citation
Hajjaj AZ, Ramini A, Alcheikh N, Younis MI (2017) Electrothermally Tunable Arch Resonator. Journal of Microelectromechanical Systems: 1–9. Available: http://dx.doi.org/10.1109/JMEMS.2017.2676006.

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Journal
Journal of Microelectromechanical Systems

DOI
10.1109/JMEMS.2017.2676006

Additional Links
http://ieeexplore.ieee.org/document/7880562/

Permanent link to this record