Generalized Swept Mid-structure for Polygonal Models

Type
Article

Authors
Martin, Tobias
Chen, Guoning
Musuvathy, Suraj
Cohen, Elaine
Hansen, Charles

KAUST Grant Number
KUS-C1-016-04

Online Publication Date
2012-06-20

Print Publication Date
2012-05

Date
2012-06-20

Abstract
We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.

Citation
Martin T, Chen G, Musuvathy S, Cohen E, Hansen C (2012) Generalized Swept Mid-structure for Polygonal Models. Computer Graphics Forum 31: 805–814. Available: http://dx.doi.org/10.1111/j.1467-8659.2012.03061.x.

Acknowledgements
This publication is based on work supported by NSF IIS-1117997, NSF OCI-0906379, NIH-1R01GM098151-01, DOE SciDAC:VACET, and Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). The authors would like to thank Jonathan Palacios for helping with the hexahedral meshing application.

Publisher
Wiley

Journal
Computer Graphics Forum

DOI
10.1111/j.1467-8659.2012.03061.x

Permanent link to this record