• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Unraveling the Functions of Wiskott-Aldrich Syndrome Protein: Insights into RNA Splicing, Nucleolus Regulation, and Immunosenescence

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Xuan_Zhou_PhD_thesis_Sep42023.pdf
    Size:
    30.85Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Embargo End Date:
    2024-09-05
    Download
    Type
    Dissertation
    Authors
    Zhou, Xuan cc
    Advisors
    Li, Mo cc
    Committee members
    Adamo, Antonio cc
    Blilou, Ikram cc
    Zhou, Jiaxi
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2023-08
    Embargo End Date
    2024-09-05
    Permanent link to this record
    http://hdl.handle.net/10754/694157
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2024-09-05.
    Abstract
    The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, autoimmunity, and predisposition to malignancy. Mutations in the WAS gene lead to dysfunction of the Wiskott-Aldrich syndrome protein (WASP), a multifunctional regulator implicated in various hematopoietic and immune processes. While some disease phenotypes have been linked to classical WASP's actin nucleation function, recent advances have unveiled additional nuclear functions, such as involvement in R-loop formation, transcriptional regulation during T helper 1 cell differentiation, and homology-directed repair. However, a comprehensive understanding of WASP's multifaceted functions remains elusive. We employ induced pluripotent stem cells (iPSCs) and Clustered Regularly Interspaced Palindromic Repeats (CRISPR) technology, specifically the CRISPR-Cas9 system, as powerful tools to investigate the mechanisms underlying WASP's functions. We first explore the consequences of WASP loss on RNA splicing. We reveal its critical role in RNA splicing. WASP-deficiency causes widespread alterations RNA splicing patterns and epigenetic activation of splicing factor gene promoters. Additionally, we uncover its involvement in liquid-liquid phase separation, forming phase-separated condensates to dynamically regulate the splicing machinery. In the second part of this thesis, our investigation uncovers the presence of WASP within the nucleolus and its interactions with key nucleolar proteins. Intriguingly, depletion of WASP leads to significant reduction in nucleolar size, disrupted nucleolar morphology, and decreased ribosomal RNA transcription, unveiling its critical role in nucleolus structure and function. Furthermore, we successfully recapitulated nucleolus changes and ribosomal RNA profile in patient samples. Lastly, we investigate immunosenescence, a crucial aspect of aging-related immune dysregulation, in the context of WAS. Through the use of WASP-deficient macrophage cells, our study revealed several distinctive features associated with immunosenescence in WASP-KO-iMPs. These include increased senescent cell proportions, heightened expression of senescence-associated secretory phenotype genes, nuclear deformation, loss of heterochromatin, and enhanced susceptibility to DNA damage. These preliminary findings offer valuable insights into our understanding of immunosenescence within the framework of WASP-deficient macrophages and its association with conditions related to WAS. In conclusion, the mechanistic study of WASP has unveiled its novel roles in regulating RNA splicing, nucleolus structure and function, as well as its potential involvement in immunosenescence.
    DOI
    10.25781/KAUST-8UQE2
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-8UQE2
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program; PhD Dissertations

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.