• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Proliferating Cells Encapsulated in Extracellular Matrix-Like Peptide Scaffolds Dynamically Change the Mechanical Properties of the Scaffold

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ranim Rawas final thesis.pdf
    Size:
    5.340Mb
    Format:
    PDF
    Description:
    Thesis
    Embargo End Date:
    2024-08-24
    Download
    Type
    Thesis
    Authors
    Rawas, Ranim cc
    Advisors
    Hauser, Charlotte cc
    Committee members
    Pain, Arnab cc
    Mahfouz, Magdy M. cc
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2023-08-24
    Embargo End Date
    2024-08-24
    Permanent link to this record
    http://hdl.handle.net/10754/693769
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2024-08-24.
    Abstract
    The extracellular matrix, or ECM, is a three-dimensional network that serves as a structural scaffold for tissue construction. To do so, cells need to attach, proliferate, self-organize, and coordinate biochemical deposition across multiple length and time scales. Hydrogels have been utilized as biomaterials because their chemical and mechanical properties can be designed to mimic those of native ECMs. Short, synthetic, amphiphilic peptides have been used to design scaffolds for tissue engineering because the peptides self-assemble in water and are easy to tune. To date, hydrogels for tissue engineering have typically sacrificed one or more crucial properties in favor of improving others, since nearly all chemical and mechanical properties within a hydrogel are interdependent. The focus of this research is to study the mechanical tunability and viability of ultrashort peptide hydrogels derived from naturally occurring amino acids (IIZR, IIZK, and IZZK), such that ideal concentrations of each peptide can be configured to mimic the mechanical properties of native ECMs for human dermal fibroblasts (HDFns) and primary cortical neurons (CNs). Our results show that IIZR, IIZK, and IZZK hydrogel scaffolds are good candidates for these cell types because their stiffness, elasticity, and biocompatibility are commensurate with those of these cells’ native ECMs. As evidence, the stiffness of the materials generally increased with HDFns across all concentrations, except for 2mg/ml. In particular, HDFns favored hydrogels consisting of higher peptide concentrations, resulting in greater elasticity and higher stiffness. IIZR hydrogels were also well-suited for both HDFns and CNs, which could have been due to the peptides’ positively charged R groups that can facilitate cell adhesion via electrostatics.
    DOI
    10.25781/KAUST-2FFHZ
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-2FFHZ
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program; MS Theses

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.