• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Investigation of Formic Acid Chemistry and Ignition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MSThesis-Ahmad.pdf
    Size:
    5.922Mb
    Format:
    PDF
    Description:
    MS Thesis
    Embargo End Date:
    2024-05-25
    Download
    Type
    Thesis
    Authors
    Alsewailem, Ahmad cc
    Advisors
    Farooq, Aamir cc
    Committee members
    Roberts, William L. cc
    Hoteit, Hussein cc
    Program
    Mechanical Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2023-05
    Embargo End Date
    2024-05-25
    Permanent link to this record
    http://hdl.handle.net/10754/692031
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2024-05-25.
    Abstract
    This thesis investigates the oxidation chemistry and ignition properties of formic acid (FA). The study reports experimental measurements of ignition delay time (IDT) and CO/CO2 time histories during FA oxidation in a shock tube. The initial concentration of FA was measured with a laser to minimize uncertainties arising from its low vapor pressure and tendency to form dimers. Shock tube experiments were carried out at two pressures, around 1.7 and 3.5 bar, and temperatures ranging from 1194 to 1658 K, with two equivalence ratios, 0.72 and 1.47. The results show a noticeable dependence of IDTs on temperature and pressure, while there was insignificant dependence on equivalence ratio. Six kinetic models for FA oxidation available in the literature were tested against the obtained data to evaluate their accuracy and suggest potential improvements. We found that 4 models performed well in predicting IDTs and CO/CO2 profiles with some overprediction at certain conditions. Sensitivity analysis revealed that the IDTs of FA are governed by unimolecular decomposition, H abstraction, and radical consumption (HOCO) reactions. The concentration of HO2 is higher at low temperatures, which is favorable for the system’s reactivity as it makes IDTs more sensitive to the reaction HOCHO + HO2 = H2O2 + HOCO. CO formation is controlled by two reactions: CO + OH = HOCO and HOCHO (+M) = CO + H2O, while the second reaction is more pronounced at high temperatures. Moreover, the dissociation of HOCO is faster at higher pressures, leading to higher initial CO concentrations. The formation of CO2 is determined by CO + OH = CO2 + H, while at higher temperatures, HOCHO (+M) = CO2 + H2 (+M) becomes more important, resulting in higher initial CO2 concentrations.
    Citation
    Alsewailem, A. (2023). Investigation of Formic Acid Chemistry and Ignition [KAUST Research Repository]. https://doi.org/10.25781/KAUST-0ABGW
    DOI
    10.25781/KAUST-0ABGW
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-0ABGW
    Scopus Count
    Collections
    MS Theses; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.