• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Towards Designing Robust Deep Learning Models for 3D Understanding

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhD_Dissertation_Hamdi_final.pdf
    Size:
    27.83Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Download
    Type
    Dissertation
    Authors
    Hamdi, Abdullah cc
    Advisors
    Ghanem, Bernard cc
    Committee members
    Park, Shinkyu cc
    Haung, Jia-Bin
    Elhoseiny, Mohammed H
    Program
    Electrical and Computer Engineering
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2023-04
    Permanent link to this record
    http://hdl.handle.net/10754/691198
    
    Metadata
    Show full item record
    Abstract
    This dissertation presents novel methods for addressing important challenges related to the robustness of Deep Neural Networks (DNNs) for 3D understanding and in 3D setups. Our research focuses on two main areas, adversarial robustness on 3D data and setups and the robustness of DNNs to realistic 3D scenarios. One paradigm for 3D understanding is to represent 3D as a set of 3D points and learn functions on this set directly. Our first work, AdvPC, addresses the issue of limited transferability and ease of defense against current 3D point cloud adversarial attacks. By using a point cloud Auto-Encoder to generate more transferable attacks, AdvPC surpasses state-of-the-art attacks by a large margin on 3D point cloud attack transferability. Additionally, AdvPC increases the ability to break defenses by up to 38\% as compared to other baseline attacks on the ModelNet40 dataset. Another paradigm of 3D understanding is to perform 2D processing of multiple images of the 3D data. The second work, MVTN, addresses the problem of selecting viewpoints for 3D shape recognition using a Multi-View Transformation Network (MVTN) to learn optimal viewpoints. It combines MVTN with multi-view approaches leading to state-of-the-art results on standard benchmarks ModelNet40, ShapeNet Core55, and ScanObjectNN. MVTN also improves robustness to realistic scenarios like rotation and occlusion. Our third work analyzes the Semantic Robustness of 2D Deep Neural Networks, addressing the problem of high sensitivity toward semantic primitives in DNNs by visualizing the DNN global behavior as semantic maps and observing the interesting behavior of some DNNs. Additionally, we develop a bottom-up approach to detect robust regions of DNNs for scalable semantic robustness analysis and benchmarking of different DNNs. The fourth work, SADA, showcases the problem of lack of robustness in DNNs specifically for the safety-critical applications of autonomous navigation, beyond the simple classification setup. We present a general framework (BBGAN) for black-box adversarial attacks on trained agents, which covers semantic perturbations to the environment of the agent performing the task. BBGAN is trained to generate failure cases that consistently fool a trained agent on tasks such as object detection, self-driving, and autonomous UAV racing.
    Citation
    Hamdi, A. (2023). Towards Designing Robust Deep Learning Models for 3D Understanding [KAUST Research Repository]. https://doi.org/10.25781/KAUST-96KS1
    DOI
    10.25781/KAUST-96KS1
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-96KS1
    Scopus Count
    Collections
    PhD Dissertations; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.