• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Deng, Panluo
    Zhuo, Fengjun
    Li, Hang
    Cheng, Zhenxiang
    Date
    2023-02-25
    Permanent link to this record
    http://hdl.handle.net/10754/690326
    
    Metadata
    Show full item record
    Abstract
    Skyrmions are promising for the next generation of spintronic devices, which involves the production and transfer of skyrmions. The creation of skyrmions can be realized by a magnetic field, electric field, or electric current while the controllable transfer of skyrmions is hindered by the skyrmion Hall effect. Here, we propose utilizing the interlayer exchange coupling induced by the Ruderman–Kittel–Kasuya–Yoshida interactions to create skyrmions through hybrid ferromagnet/synthetic antiferromagnet structures. An initial skyrmion in ferromagnetic regions could create a mirroring skyrmion with an opposite topological charge in antiferromagnetic regions driven by the current. Furthermore, the created skyrmions could be transferred in synthetic antiferromagnets without deviations away from the main trajectories due to the suppression of the skyrmion Hall effect in comparison to the transfer of the skyrmion in ferromagnets. The interlayer exchange coupling can be tuned, and the mirrored skyrmions can be separated when they reach the desired locations. Using this approach, the antiferromagnetic coupled skyrmions can be repeatedly created in hybrid ferromagnet/synthetic antiferromagnet structures. Our work not only supplies a highly efficient approach to create isolated skyrmions and correct the errors in the process of skyrmion transport, but also paves the way to a vital information writing technique based on the motion of skyrmions for skyrmion-based data storage and logic devices.
    Citation
    Deng, P., Zhuo, F., Li, H., & Cheng, Z. (2023). Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design. Nanomaterials, 13(5), 859. https://doi.org/10.3390/nano13050859
    Sponsors
    This research was funded by the National Natural Science Foundation of China (grant number 11804078), the Postdoctoral International Exchange Program of China, Grant No. YJ20220302 and the Australian Research Council (ARC) (grant number DP190100150). Hang Li and Panluo Deng were supported by National Natural Science Foundation of China (grant number 11804078). Fengjun Zhuo was supported by the Postdoctoral International Exchange Program of China (Grant No. YJ20220302) and the Double First-class Initiative Fund of ShanghaiTech University and acknowledges support from the Postdoctoral International Exchange Program of China (No. YJ20220302) and King Abdullah University of Science and Technology (KAUST). Hang Li acknowledges support from KAUST at the beginning of his career. Zhenxiang Cheng was supported by the Australian Research Council (ARC) (grant number DP190100150). The authors thank Tania Silver (University of Wollongong) for reading the manuscript and polishing the English in this paper.
    Journal
    Nanomaterials (Basel, Switzerland)
    DOI
    10.3390/nano13050859
    PubMed Central ID
    PMC10004772
    Additional Links
    https://www.mdpi.com/2079-4991/13/5/859
    ae974a485f413a2113503eed53cd6c53
    10.3390/nano13050859
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.