• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Crystal growth, optoelectronic and biological properties of acetamidinium compounds: experimental and computational approaches

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Sudhakar, C.
    Munusamy, Saravanabhavan
    Shanmugam, Ramesh
    Muhammad, Shabbir
    Siddeeg, Saifeldin M.
    Badavath, Vishnu Nayak
    Sivakumar, Chandrasekar
    Saravanabhavan, M. cc
    Date
    2023-01-20
    Permanent link to this record
    http://hdl.handle.net/10754/690003
    
    Metadata
    Show full item record
    Abstract
    New molecular crystals, namely acetamidinium picrate (AP), and acetamidinium p-toluene sulphonate (APTS) have been synthesised and grown as single crystals. Crystal structure of AP and APTS were determined as C2/c and P21/c, respectively. They were characterised by spectral methods like UV-Vis, PL, FT-IR, FT-Raman and NMR. The SHG efficiency of the crystals was investigated by the Kurtz–Perry powder method. Experimentally, antioxidant activities and DNA binding abilities were analysed. Molecular docking studies clearly suggested that the synthesised compound shows binding affinity to the minor groove and establishes hydrogen bonding. The molecular geometries of the entitled compounds are computationally simulated and compared with their respective experimental crystal structures. Quantum chemically, total density of states (TDOS) and partial density of states (PDOS) have been estimated to explain the contributions of individual molecular fragments to the bonding properties of AP and APTS molecules. Additionally, quantum chemical calculations are also used to explore the optical and third-order nonlinear optical (NLO) polarizability of synthesized compounds. The calculated third-order NLO polarizability amplitudes are found to be 13.19 × 10–36 and 27.14 × 10–36 esu, for AP and APST, respectively, which are about four and nine times greater than p-NA (a prototype NLO molecule). The molecular orbitals and ground state electrostatic potentials are drawn to explain the charge distributions over the molecular surfaces of entitled molecules. The current study puts the entitled molecules under the spotlight of scientific interest not only in optical fields but also for biological applications, which may evoke the interest of the scientific community in the respected fields.
    Citation
    Sudhakar, C., Munusamy, S., Shanmugam, R., Muhammad, S., Siddeeg, S. M., Badavath, V. N., Sivakumar, C., & Sekar, M. (2023). Crystal growth, optoelectronic and biological properties of acetamidinium compounds: experimental and computational approaches. Journal of Materials Science: Materials in Electronics, 34(3). https://doi.org/10.1007/s10854-022-09467-0
    Sponsors
    For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia. The authors of Sri Ramakrishna Mission Vidyalaya College of Arts and Science acknowledge DST-SAIF Cochin for single crystal X-ray diffraction and thermal analysis and Karunya Deemed University, Coimbatore for optical studies.
    Publisher
    Springer Science and Business Media LLC
    Journal
    Journal of Materials Science: Materials in Electronics
    DOI
    10.1007/s10854-022-09467-0
    Additional Links
    https://link.springer.com/10.1007/s10854-022-09467-0
    ae974a485f413a2113503eed53cd6c53
    10.1007/s10854-022-09467-0
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.