• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Investigating the Role of Fucosylation on the Stemness of Human CD34+ Mobilized Peripheral Blood Progenitor Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jana MS Thesis - Investigating the Role of Fucosylation on the Stemness of Human CD34+ Progenitor Cells.pdf
    Size:
    3.179Mb
    Format:
    PDF
    Description:
    MS Thesis
    Embargo End Date:
    2024-02-05
    Download
    Type
    Thesis
    Authors
    Malki, Jana cc
    Advisors
    Merzaban, Jasmeen cc
    Committee members
    Orlando, Valerio cc
    Aranda, Manuel cc
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2023-01
    Embargo End Date
    2024-02-05
    Permanent link to this record
    http://hdl.handle.net/10754/687488
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2024-02-05.
    Abstract
    It has been well-established that the process of stem cell homing is initially mediated by E-Selectin, a cell adhesion molecule constitutively expressed on the bone marrow vasculature. The ligand for E-selectin is a carbohydrate modification known as sialyl-Lewis X (sLex) found mainly on proteins, and it has been shown that ex vivo fucosylation of stem cells, including hematopoietic stem cells (HSCs) enhances these ligands, resulting in more efficient delivery of stem cells to their home in the bone marrow. However, the exact biological effects that fucosylation has on HSC function has not been extensively studied. In vivo mouse experiments from our lab where short-term CD34+ hematopoietic stem cells were fucosylated improved their delivery to the bone marrow but also exhibited improved longevity and apparent stemness as assessed by secondary transplantation. Therefore, to investigate the role fucosylation has on this phenotype and to uncover whether E-Selectin binding is also required alongside it to trigger molecular changes in hematopoietic stem cells, we set up in vitro cultures with CD34+ cells from GCSF-mobilized human peripheral blood (mPB-CD34+) that had been either left untreated or treated with fucosyltransferase VI (FUT6) in the presence and absence of recombinant E-selectin protein as well as the fucosylation inhibitor 2-fluorofucose (2-FF). We then performed characterization assays to assess cell cycle, signaling, differentiation, and viability using flow cytometry, western blotting, Giemsa staining, and a variety of viability assays. We found that fucosylation enhances the effects of E-Selectin binding, activating stem cell proliferation, triggering the PI3K/AKT/NFkB, P38, and EGFR pathways, induces a transient increase in pre-apoptotic cells, and may alter cell differentiation. These results uncover the role of fucosylation in hematopoietic stem cells and highlights the PI3K/AKT/NFkB pathway as a signaling route mediated by E-selectin to influence stem cell longevity.
    Citation
    Malki, J. (2023). Investigating the Role of Fucosylation on the Stemness of Human CD34+ Mobilized Peripheral Blood Progenitor Cells [KAUST Research Repository]. https://doi.org/10.25781/KAUST-524UJ
    DOI
    10.25781/KAUST-524UJ
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-524UJ
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program; MS Theses

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.