• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Simulation and Calibration of Uncertain Space Fractional Diffusion Equations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    HasnaaAlzahraniDissertation.pdf
    Size:
    4.003Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Embargo End Date:
    2024-02-01
    Download
    Type
    Dissertation
    Authors
    Alzahrani, Hasnaa H. cc
    Advisors
    Knio, Omar cc
    Committee members
    Keyes, David E. cc
    Hoteit, Ibrahim cc
    Alexanderian, Alen
    Program
    Applied Mathematics and Computational Science
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2023-01-10
    Embargo End Date
    2024-02-01
    Permanent link to this record
    http://hdl.handle.net/10754/687442
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2024-02-01.
    Abstract
    Fractional diffusion equations have played an increasingly important role in ex- plaining long-range interactions, nonlocal dynamics and anomalous diffusion, pro- viding effective means of describing the memory and hereditary properties of such processes. This dissertation explores the uncertainty propagation in space fractional diffusion equations in one and multiple dimensions with variable diffusivity and order parameters. This is achieved by:(i) deploying accurate numerical schemes of the forward problem, and (ii) employing uncertainty quantifications tools that accelerate the inverse problem. We begin by focusing on parameter calibration of a variable- diffusivity fractional diffusion model. A random, spatially-varying diffusivity field is considered together with an uncertain but spatially homogeneous fractional operator order. Polynomial chaos (PC) techniques are used to express the dependence of the stochastic solution on these random variables. A non-intrusive methodology is used, and a deterministic finite-difference solver of the fractional diffusion model is utilized for this purpose. The surrogates are first used to assess the sensitivity of quantities of interest (QoIs) to uncertain inputs and to examine their statistics. In particular, the analysis indicates that the fractional order has a dominant effect on the variance of the QoIs considered. The PC surrogates are further exploited to calibrate the uncertain parameters using a Bayesian methodology. In the broad range of parameters addressed, the analysis shows that the uncertain parameters having a significant impact on the variance of the solution can be reliably inferred, even from limited observations. Next, we address the numerical challenges when multidimensional space-fractional diffusion equations have spatially varying diffusivity and fractional order. Significant computational challenges arise due to the kernel singularity in the fractional integral operator as well as the resulting dense discretized operators. Hence, we present a singularity-aware discretization scheme that regularizes the singular integrals through a singularity subtraction technique adapted to the spatial variability of diffusivity and fractional order. This regularization strategy is conveniently formulated as a sparse matrix correction that is added to the dense operator, and is applicable to different formulations of fractional diffusion equations. Numerical results show that the singularity treatment is robust, substantially reduces discretization errors, and attains the first-order convergence rate allowed by the regularity of the solutions. In the last part, we explore the application of a Bayesian formalism to detect an anomaly in a fractional medium. Specifically, a computational method is presented for inferring the location and properties of an inclusion inside a two-dimensional domain. The anomaly is assumed to have known shape, but unknown diffusivity and fractional order parameters, and is assumed to be embedded in a fractional medium of known fractional properties. To detect the presence of the anomaly, the medium is forced using a collection of localized sources, and its response is measured at the source locations. To this end, the singularity-aware finite-difference scheme is applied. A non-intrusive regression approach is used to explore the dependence of the computed signals on the properties of the anomaly, and the resulting surrogates are first exploited to characterize the variability of the response, and then used to accelerate the Bayesian inference of the anomaly. In the regime of parameters considered, the computational results indicate that robust estimates of the location and fractional properties of the anomaly can be obtained, and that these estimates become sharper when high contrast ratios prevail between the anomaly and the surrounding matrix.
    Citation
    Alzahrani, H. H. (2023). Simulation and Calibration of Uncertain Space Fractional Diffusion Equations [KAUST Research Repository]. https://doi.org/10.25781/KAUST-93GMA
    DOI
    10.25781/KAUST-93GMA
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-93GMA
    Scopus Count
    Collections
    Applied Mathematics and Computational Science Program; PhD Dissertations; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.