Show simple item record

dc.contributor.authorVerma, Vinay Kumar
dc.contributor.authorMehta, Nikhil
dc.contributor.authorSi, Shijing
dc.contributor.authorHenao, Ricardo
dc.contributor.authorCarin, Lawrence
dc.date.accessioned2023-03-06T06:30:00Z
dc.date.available2022-12-15T13:52:54Z
dc.date.available2023-03-06T06:30:00Z
dc.date.issued2023-02-06
dc.identifier.citationVerma, V. K., Mehta, N., Si, S., Henao, R., & Carin, L. (2023). Pushing the Efficiency Limit Using Structured Sparse Convolutions. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). https://doi.org/10.1109/wacv56688.2023.00644
dc.identifier.isbn9781665493468
dc.identifier.doi10.1109/WACV56688.2023.00644
dc.identifier.urihttp://hdl.handle.net/10754/686477
dc.description.abstractWeight pruning is among the most popular approaches for compressing deep convolutional neural networks. Recent work suggests that in a randomly initialized deep neural network, there exist sparse subnetworks that achieve performance comparable to the original network. Unfortunately, finding these subnetworks involves iterative stages of training and pruning, which can be computationally expensive. We propose Structured Sparse Convolution (SSC), that leverages the inherent structure in images to reduce the parameters in the convolutional filter. This leads to improved efficiency of convolutional architectures compared to existing methods that perform pruning at initialization. We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in "efficient architectures."Extensive experiments on well-known CNN models and datasets show the effectiveness of the proposed method. Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
dc.publisherIEEE
dc.relation.urlhttps://ieeexplore.ieee.org/document/10030101/
dc.rightsThis is an accepted manuscript version of a paper before final publisher editing and formatting. Archived with thanks to IEEE.
dc.titlePushing the Efficiency Limit Using Structured Sparse Convolutions
dc.typeConference Paper
dc.contributor.departmentElectrical and Computer Engineering Program
dc.contributor.departmentComputer, Electrical and Mathematical Science and Engineering (CEMSE) Division
dc.conference.date2023-01-02 to 2023-01-07
dc.conference.name23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
dc.conference.locationWaikoloa, HI, USA
dc.eprint.versionPre-print
dc.contributor.institutionDuke University
dc.contributor.institutionShanghai International Studies University, SEF
dc.identifier.pages6492-6502
dc.identifier.arxivid2210.12818
kaust.personCarin, Lawrence
dc.identifier.eid2-s2.0-85149046294
refterms.dateFOA2022-12-15T13:53:43Z


Files in this item

Thumbnail
Name:
2210.12818.pdf
Size:
1.414Mb
Format:
PDF
Description:
Preprint

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version