Fresh Water Generation and PV Cooling via Solar-driven Membrane Distillation and Atmospheric Water Harvesting

Access Restrictions
At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2023-12-12.

Abstract
To tackle concerns associated with the water-energy nexus into providing a minimal barrier-of-entry electricity utilization and freshwater supplies to remote communities and decentralized areas. This dissertation addresses off-grid water supply and efficient electricity utilization in different conditional and geographical scenarios. Additionally, the interlinking of water and electricity was addressed by combining water generating methods with cooling devices like PV panels for an improved electricity usage. Firstly, a photovoltaic-membrane distillation-evaporative crystallizer was fabricated to provide simultaneous water and electricity generation. This device uses seawater as a water supply to provide fresh water with zero liquid discharge into cooling down the PV panel for an enhanced performance. Second, atmospheric water harvesting composite PDMAPS/CNT/LiCl was fabricated to demonstrate the salting-in effect for an improved water capture. This uses hygroscopic salt to capture and release water from the atmosphere. Finally, the AWH approach was used to fabricate an anti-corrosive composite PDMAPS/CNT/Clay/IL into cooling electronics through evaporative heat dissipation with improved adhesive properties.

Citation
Aleid, S. (2022). Fresh Water Generation and PV Cooling via Solar-driven Membrane Distillation and Atmospheric Water Harvesting [KAUST Research Repository]. https://doi.org/10.25781/KAUST-21A8F

DOI
10.25781/KAUST-21A8F

Permanent link to this record