Evaluation of next generation of high-order compressible fluid dynamic solvers on the cloud computing for complex industrial flows
Name:
1-s2.0-S2590005622001011-main_removed.pdf
Size:
6.318Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleKAUST Department
King Abdullah University of Science and Technology (KAUST), Computer Electrical and Mathematical Science and Engineering Division (CEMSE), Extreme Computing Research Center (ECRC), 23955-6900 Thuwal, Saudi ArabiaSupercomputing, Computational Scientists
KAUST Supercomputing Laboratory (KSL)
Extreme Computing Research Center
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
Applied Mathematics and Computational Science Program
Physical Science and Engineering (PSE) Division
KAUST Grant Number
OSR-2019-CCF-3666Date
2022-12-09Permanent link to this record
http://hdl.handle.net/10754/686356
Metadata
Show full item recordAbstract
Industrially relevant computational fluid dynamics simulations frequently require vast computational resources that are only available to governments, wealthy corporations, and wealthy institutions. Thus, in many contexts and realities, high-performance computing grids and cloud resources on demand should be evaluated as viable alternatives to conventional computing clusters. In this work, we present the analysis of the time-to-solution and cost of an entropy stable collocated discontinuous Galerkin (SSDC) compressible computational fluid dynamics framework on Ibex, the on-premises cluster at KAUST, and the Amazon Web Services Elastic Compute Cloud for complex compressible flows. SSDC is a prototype of the next generation computational fluid dynamics frameworks developed following the road map established by the NASA CFD vision 2030. We simulate complex flow problems using high-order accurate fully-discrete entropy stable algorithms. In terms of time-to-solution, the Amazon Elastic Compute Cloud delivers the best performance, with the Graviton2 processors based on the Arm architecture being the fastest. However, the results also indicate that the Ibex nodes based on the AMD Rome architecture deliver good performance, close to those observed for the Amazon Elastic Compute Cloud. Furthermore, we observed that computations performed on the Ibex on-premises cluster are currently less expensive than those performed in the cloud. Our findings could be used to develop guidelines for selecting high-performance computing cloud resources to simulate realistic fluid flow problems.Citation
Al Jahdali, R., Kortas, S., Shaikh, M., Dalcin, L., & Parsani, M. (2022). Evaluation of next generation of high-order compressible fluid dynamic solvers on the cloud computing for complex industrial flows. Array, 100268. https://doi.org/10.1016/j.array.2022.100268Sponsors
The work described in this paper was supported by King Abdullah University of Science and Technology through the award OSR-2019-CCF-3666. The authors are also thankful for the computing resources of the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology.Publisher
Elsevier BVJournal
ArrayAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S2590005622001011ae974a485f413a2113503eed53cd6c53
10.1016/j.array.2022.100268
Scopus Count
Except where otherwise noted, this item's license is described as Archived with thanks to Array under a Creative Commons license, details at: http://creativecommons.org/licenses/by-nc-nd/4.0/