Dimethyl ether low-temperature catalytic oxidation over Rh/Al2O3 in a stagnation-flow reactor
Name:
DME manuscript.pdf
Size:
1.130Mb
Format:
PDF
Description:
Accepted Manuscript
Embargo End Date:
2024-12-29
Type
ArticleAuthors
Alghamdi, Nawaf M.Sarathy, Mani

KAUST Department
Chemical Engineering ProgramClean Combustion Research Center
Physical Science and Engineering (PSE) Division
KAUST Catalysis Center (KCC)
Date
2022-12-29Embargo End Date
2024-12-29Permanent link to this record
http://hdl.handle.net/10754/685598
Metadata
Show full item recordAbstract
Dimethyl ether (DME) is a promising fuel for use in low-temperature portable hydrogen production, domestic applications, or diesel engines. It burns with less emissions than conventional fuels and has properties similar to LPG in terms of storage and transport, rendering it effective in many strategies for combating climate change. In this study we investigated the partial and total oxidation of DME over 5 wt% Rh/Al2O3 at low temperatures (215 to 320 °C), relevant to portable and domestic energy applications as well as the after-treatment systems of DME-powered engines. We captured the effects of temperature, flow rate, and inlet feed composition on the reactivity. For partial oxidation, we utilized the stagnation-flow reactor geometry to isolate the oxidation zone from the reforming zone. We discuss the reaction order with respect to DME and O2 and provide activation energy values under kinetics control. We also provide data where internal and external mass transfer limitations are present to examine the diffusive-convective transport near the catalyst surface, not easily done in three-dimensional environments such as packed beds. The experimental data we provide here pave the way for accurate kinetic modeling of DME partial and total oxidation on Rh/Al2O3, for reactor design and optimization as well as rational catalyst design.Citation
Alghamdi, N. M., & Mani Sarathy, S. (2023). Dimethyl ether low-temperature catalytic oxidation over Rh/Al2O3 in a stagnation-flow reactor. Fuel, 338, 127302. https://doi.org/10.1016/j.fuel.2022.127302Sponsors
This work was supported by King Abdullah University of Science and Technology Office of Sponsored Research with funds given to the Clean Combustion Research Center (CCRC) and KAUST Catalysis Center (KCC).Publisher
Elsevier BVJournal
FUELAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S0016236122041266ae974a485f413a2113503eed53cd6c53
10.1016/j.fuel.2022.127302