Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3
Type
ArticleAuthors
Das, ShubhankarRoss, A.

Ma, X X

Becker, S.

Schmitt, C

van Duijn, F

Galindez-Ruales, E F

Fuhrmann, F
Syskaki, M-A

Ebels, U
Baltz, V

Barra, A-L
Chen, H Y
Jakob, G.

Cao, S X

Sinova, J
Gomonay, Olena

Lebrun, R.

Kläui, M
KAUST Grant Number
OSR-2019-CRG8-4048.2Date
2022-10-17Permanent link to this record
http://hdl.handle.net/10754/685138
Metadata
Show full item recordAbstract
In antiferromagnets, the efficient transport of spin-waves has until now only been observed in the insulating antiferromagnet hematite, where circularly (or a superposition of pairs of linearly) polarized spin-waves diffuse over long distances. Here, we report long-distance spin-transport in the antiferromagnetic orthoferrite YFeO3, where a different transport mechanism is enabled by the combined presence of the Dzyaloshinskii-Moriya interaction and externally applied fields. The magnon decay length is shown to exceed hundreds of nanometers, in line with resonance measurements that highlight the low magnetic damping. We observe a strong anisotropy in the magnon decay lengths that we can attribute to the role of the magnon group velocity in the transport of spin-waves in antiferromagnets. This unique mode of transport identified in YFeO3 opens up the possibility of a large and technologically relevant class of materials, i.e., canted antiferromagnets, for long-distance spin transport.Citation
Das, S., Ross, A., Ma, X. X., Becker, S., Schmitt, C., van Duijn, F., Galindez-Ruales, E. F., Fuhrmann, F., Syskaki, M.-A., Ebels, U., Baltz, V., Barra, A.-L., Chen, H. Y., Jakob, G., Cao, S. X., Sinova, J., Gomonay, O., Lebrun, R., & Kläui, M. (2022). Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33520-5Sponsors
S.D. thanks Mr. T. Reimer of Johannes Gutenberg University Mainz for his help in fabricating the devices. This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universität Mainz (MPGC). The authors in Mainz acknowledge support from the DFG project number 423441604. R.L. and M.K. acknowledge financial support from the Horizon 2020 Framework Programme of the European Commission under FET-Open grant agreement no. 863155 (s-Nebula). All authors from Mainz also acknowledge support from both MaHoJeRo (DAAD Spintronics network, project number 57334897 and 57524834), SPIN + X (DFG SFB TRR 173 No. 268565370, projects A01, A03, A11, B02, and B12), and KAUST (OSR-2019-CRG8-4048.2). M.K. acknowledges support by the Research Council of Norway through its Centers of Excellence funding scheme, project number 262633 “QuSpin” and the Horizon Europe Framework Programme of the European Commission under grant agreement no. 1010702P7 (SWAN-om-chip). O.G. and J.S. additionally acknowledge support from the ERC Synergy Grant SC2 (No. 610115), EU FET Open RIA Grant no. 766566, and funding from Deutsche Forschungsgemeinschaft (DFG) via” TRR 288 – 422213477 (Projects No. A09). J.S. additionally acknowledges TopDyn JGU Grant. S.B acknowledges the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number 358671374. S.X.C. acknowledges support by the Science and Technology Commission of Shanghai Municipality (No.21JC1402600), and the National Natural Science Foundation of China (NSFC, No. 12074242). R.L. acknowledges financial support from the Horizon 2020 Framework Programme of the European Commission under FET-Open grant agreement No. 964931 (TSAR).Publisher
Springer Science and Business Media LLCJournal
Nature communicationsPubMed ID
36253357PubMed Central ID
PMC9576681Additional Links
https://www.nature.com/articles/s41467-022-33520-5ae974a485f413a2113503eed53cd6c53
10.1038/s41467-022-33520-5
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe(2)O(3).
- Authors: Lebrun R, Ross A, Gomonay O, Baltz V, Ebels U, Barra AL, Qaiumzadeh A, Brataas A, Sinova J, Kläui M
- Issue date: 2020 Dec 10
- Antiferromagnetic magnon spintronic based on nonreciprocal and nondegenerated ultra-fast spin-waves in the canted antiferromagnet α-Fe(2)O(3).
- Authors: El Kanj A, Gomonay O, Boventer I, Bortolotti P, Cros V, Anane A, Lebrun R
- Issue date: 2023 Aug 11
- Propagation Length of Antiferromagnetic Magnons Governed by Domain Configurations.
- Authors: Ross A, Lebrun R, Gomonay O, Grave DA, Kay A, Baldrati L, Becker S, Qaiumzadeh A, Ulloa C, Jakob G, Kronast F, Sinova J, Duine R, Brataas A, Rothschild A, Kläui M
- Issue date: 2020 Jan 8
- Room-Temperature Antiferromagnetic Resonance and Inverse Spin-Hall Voltage in Canted Antiferromagnets.
- Authors: Boventer I, Simensen HT, Anane A, Kläui M, Brataas A, Lebrun R
- Issue date: 2021 May 7
- Field-driven dynamics and time-resolved measurement of Dzyaloshinskii-Moriya torque in canted antiferromagnet YFeO(3).
- Authors: Kim TH, Grüenberg P, Han SH, Cho BK
- Issue date: 2017 Jul 3