• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Influence of Internal Geometry on Pre-chamber Combustion Concept in a Lean Burn Natural Gas Engine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PonnyaHlaing_DissertationThesisFinal3.pdf
    Size:
    8.024Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Embargo End Date:
    2023-10-24
    Download
    Type
    Dissertation
    Authors
    Hlaing, Ponnya cc
    Advisors
    Turner, James W. G. cc
    Committee members
    Leach, Felix
    Martinez, Javier Ruiz
    Magnotti, Gaetano cc
    Turner, James W. G. cc
    Im, Hong G. cc
    Program
    Mechanical Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2022-08-23
    Embargo End Date
    2023-10-24
    Permanent link to this record
    http://hdl.handle.net/10754/685117
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2023-10-24.
    Abstract
    The road transport sector, dominated by internal combustion engines, accounts for as high as 23% of annual carbon emissions and is considered the major area where urgent carbon reduction strategies are required. Natural gas is considered one of the intermediate fuels to reduce carbon emissions before net carbon neutral solutions can be achieved. Methane (CH4), a major constituent of natural gas, has the highest hydrogen-to-carbon ratio among the naturally occurring hydrocarbons, and the CO2 emission from natural gas combustion is around 25% less than diesel combustion. Lean combustion shows promises for improved engine efficiency, thereby reducing carbon emissions for a given required power output. However, igniting lean natural gas mixtures requires high ignition energy, beyond the capability of spark ig nition. The pre-chamber combustion (PCC) concept can provide the required ignition energy with relatively simple components. While most pre-chamber designs found in the literature are bulky and require extensive cylinder head modifications or complete engine redesign, the narrow-throat pre-chamber design can readily fit the diesel injector pockets of most heavy-duty engines without the need for substantial hardware modifications. The unique pre-chamber design is significantly different from the contemporary pre-chamber geometries, and its engine combustion phenomena and operating characteristics are largely unknown. This thesis work investigates the effect of important pre-chamber dimensions, such as the volume, nozzle hole diameter, and throat diameter, on the engine operating characteristics and emission trends. The experiments focus on the lean operation with excess air ratios (λ) exceeding 1.6, which can be achieved by auxiliary fuel injection into the pre-chamber. The air-fuel mixture formation process inside the pre-chamber is also investigated by employing 1-D and 3-D CFD simulations, where the engine experiments provided the boundary conditions. From the simulation results, a correlation between the injected and the trapped fuel in the pre-chamber is proposed by theoretical scavenging models to estimate the air-fuel ratio in the pre-chamber with high accuracy. Although the studies largely rely on thermodynamic engine experiments, the 1-D engine simulation implements the engine studies in estimating the mixture composition and heat transfer losses from the engine.
    Citation
    Hlaing, P. (2022). Influence of Internal Geometry on Pre-chamber Combustion Concept in a Lean Burn Natural Gas Engine [KAUST Research Repository]. https://doi.org/10.25781/KAUST-WS435
    DOI
    10.25781/KAUST-WS435
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-WS435
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.